
Supervised Learning for Test Suit Selection
in Continuous Integration

Ricardo Miguel Pires Martins

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Rui Filipe Lima Maranhão de Abreu
Prof. Manuel Fernando Cabido Peres Lopes

Examination Committee

Chairperson: Prof. Prof. António Manuel Ferreira Rito da Silva
Supervisor: Prof. Manuel Fernando Cabido Peres Lopes

Member of the Committee: Prof. Luís David Figueiredo Mascarenhas Moreira Pedrosa

January 2021

ii

Dedicated to my family and friends

iii

iv

Acknowledgments

First, I would like to thank my family, especially my parents. To my mother, for being a pain in my a**

during my school years and always pushing me to study more and get better grades. To my father for

always being there when I needed to discuss hard Maths problems and for nurturing the geeky side of

me. Both of you were always fair to me, although sometimes it was hard for me to understand it.

I also would like to thank my supervisors from IST Prof. Rui Maranhão Abreu and Prof. Manuel Lopes

for sharing their insight on the subject and always giving their honest opinion on the work developed.

Also, a quick thank you to Daniel Correia for sharing is thesis work.

A word of appreciation to OutSystems for allowing all of this. It was a great opportunity to work with

such a great company and I will be forever thankful. The free coffee helped a lot! Thank you to the

IA department for being so easygoing and welcoming me and my fellow colleagues into their working

space.

I also want to give a special thanks to Eng. João Nadkarni for guiding me through this whole process.

From my integration in OutSystems to correcting my thesis poor english sentences. I know this thesis

would have not been delivered on time if it wasn’t for his consistent wake up calls. Thank you for always

answering my, sometimes, ridiculous questions and I’m sorry for bothering you on the weekends and

holidays.

And last, thank you to all my friends: Gonçalo Matos whom I had the pleasure to share desk at the

OutSystems’ office; Catarina Coelho for always letting me borrow her notes; Ricardo Oliveira with whom

I shared sleepless nights doing never ending projects. Pedro Dias and Pedro Roque for the amazing

Erasmus experience. Beatriz Correia for always saying hello in my Twitch stream. Carolina Santos

for making me apply to this thesis project. And finally thanks to Manuel, Diogo, Medeiros, Santos and

Borges with whom I once, almost, split the price of a boat engine.

v

vi

Resumo

Continuous Integration é o processo de juntar as alterações de código dentro de um projeto de software.

Este mecanismo de manutenção da branch mestre de um projeto sempre atualizada e sem falhas,

levanta problemas em termos de custos computacionais, considerando a enorme quantidade de código

existente em grades sistemas de software que necessita de ser testada. Dada esta situação, o trabalho

dos trabalhadores torna-se mais difı́cil, dada a quantidade de tempo que estes têm de esperar pelo

feedback das suas alterações no código - média de 1 hora na OutSystems.

Reconhecendo este problema num contexto da OutSystems, esta dissertação propõe uma solução,

que tenta reduzir o tempo de execução da fase de testes, selecionado apenas uma parte de todos os

tests, daao uma determinada mudança no código. Isto é cumprido através do treino de um Classificador

de Machine Learning com features como historico de falhas de ficheiro de código/teste, extensão de

códigos de ficheiro e outros.

Os resultados obitdos pelo melhor Classificador de Machine Learning treinado mostra resultados

muito bons, comparáveis à mais recente literatura na mesma área. Este classificador conseguiu reduzir

o tempo mediano de execução de testes por 10 minutes, mantendo 97% de recall. Adicionalmente,

o impacto de submissões de código inocentes e testes flaky é considerado e estudado de forma a

perceber o contexto industrial da OutSystems.

Keywords: Continuous Integration, Seleção de Testes, Modelo Classificador, testes flaky, sub-

missões inocentes

vii

viii

Abstract

Continuous Integration is the process of merging code changes into a software project. This mechanism

of keeping the master branch of a project always updated and unfailingly, raises problems in terms of

computational costs, considering the enormous amount of code existent in large software systems that

needs to be tested first. Given this situation, the work of developers also becomes harder because of

the amount of time they have to wait for feedback on their commits - median of 50 mins.

Recognizing this problem in an Outsystems context, this paper proposes a solution that aims to

reduce the execution time of the testing phase, by selecting only a subset of all the tests, given some

code changes. This is accomplished by training a Machine Learning Classifier with features such as

code/test files history fails, extension code files that tend to generate more errors the during testing

phase and others.

The results obtained by the best Machine Learning classifier trained showed great results which

could be compared to recent literature done in the same area. This model managed to reduce the

median test execution time by nearly 10 minutes while mantaining 97% of recall. Additionally, the impact

of innocent commits and flaky tests was taken into account and studied to understand the industrial

context of OutSystems.

Keywords: Continuous Integration, Test Selection, classifier model, flaky tests, innocent com-

mits

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Tables . xiii

List of Figures . xiii

Nomenclature . xv

Glossary . 1

1 Introduction 1

1.1 Motivation . 1

1.2 Topic Overview . 1

1.3 OutSystems context . 3

1.3.1 Test Selection . 3

1.3.2 Flaky Tests . 4

1.3.3 Innocent Commits . 4

1.4 Objectives . 5

1.5 Thesis Outline . 5

2 Background 7

2.1 Test Selection . 7

2.2 Supervised Learning . 8

2.3 Algorithm Selection . 9

2.4 Hyper Parameter Tuning . 12

2.5 Unbalanced data sets . 13

2.6 Flaky Tests . 13

3 Related Work 15

3.1 Test Suite Selection . 15

3.2 Feature Selection . 17

3.3 Flaky Tests . 18

xi

4 Solution Proposal 19

4.1 Goals . 19

4.2 Solution Design . 20

4.2.1 Data Set and Features definition . 20

4.2.2 Classifier Models’ Training and Tuning . 23

5 Implementation 25

5.1 Overview . 25

5.1.1 Data sets creation . 25

5.1.2 Features data extraction . 28

5.1.3 Classifier models generation . 31

6 Results 35

6.1 General Details . 35

6.1.1 Data set . 35

6.1.2 Code base . 36

6.1.3 Test Suite . 36

6.1.4 Software and harware . 36

6.2 Evaluation methodology . 37

6.2.1 Threshold variation experiment . 39

6.2.2 Time limit variation experiment . 39

6.3 Experiments . 39

6.3.1 Baseline classifier models . 39

6.3.2 Balanced classifier models . 40

6.3.3 Tuned classifier models . 41

7 Conclusions 49

7.1 Discussion . 49

7.1.1 Results comparison . 50

7.2 Future Work . 50

7.2.1 Tool with warning messages . 51

7.2.2 Contextual bandits approach . 51

7.3 Contributions . 52

7.3.1 OutSystems . 52

Bibliography 55

A Classifier models metrics values 59

xii

List of Tables

1.1 Example of the application of the SuperSet Strategy . 5

4.1 Example of the structure of the data set before adding the features 20

6.1 Example of a classifier model’s results . 37

6.2 Macro-recall values from the baseline classifier models 40

6.3 Macro-recall values from the balanced classifier models 40

6.4 Set of hyper parameters for each algorithm . 41

6.5 Results of the tuned classifier models . 42

6.6 Threshold variation results with threshold at 0.5 . 42

6.7 Metrics values for the time limits 2500 (CorePlatform) and 450 seconds (Developement) . 45

6.8 Time limit variation results - Core Platform - 2100 secs, Development - 188 secs 46

6.9 Time limit variation results - Core Platform - 2200 secs, Development - 167 secs 46

6.10 Time limit variation results - Core Platform - 1473 secs, Development - 51 secs 46

6.11 Time limit variation results - Core Platform - 1955 secs, Development - 36 secs 46

7.1 Results from Diogo’s solution tool . 50

xiii

List of Figures

1.1 From code submission to code correction (OutSystems) 3

2.1 Processes of Supervised Learning . 8

5.1 Steps of the solution’s implementation . 26

5.2 Simplified view of the relevant database tables . 26

5.3 Time-series cross validation . 34

6.1 Threshold variation for the BRF (no filter data set) classifier model 43

6.2 Threshold variation for the BRF (innocent-filter data set) classifier model 43

6.3 Threshold variation for the LR-B (no filter data set) classifier model 44

6.4 Threshold variation for the BRF-OS (no filter data set) classifier model 44

7.1 Tool implementation example into the OutSystems CI pipeline 52

A.1 Threshold variation results for the Balanced Random Forest-no filter data set classifier

model . 59

A.2 Threshold variation results for the Balanced Random Forest-innocent filter data set clas-

sifier model . 60

A.3 Threshold variation results for the Logistic Regression (balanced)-no filter data set classi-

fier model . 60

A.4 Threshold variation results for the Logistic Regression(OS)-no filter data set classifier model 61

xiv

Nomenclature

ANN Artificial Neural Network

CI Continuous Integration

KNN K-Nearest Neighbour

ML Machine Learning

RTS Regression testing selection

xv

xvi

Chapter 1

Introduction

1.1 Motivation

Normally, in a software company, the software complexity is directly proportional to its code base size.

As this complexity increases, the time it takes to test if a software is according to the specified standards

of a company, also increases. This will ultimately increase the computational costs and delay the work

of developers, who will not receive feedback on their commits during the time they are focused on the

problem, which makes them lose track of the work done.

Given the current situation of the Regression Testing at OutSystems, in which developers have to

wait nearly 1 hour to receive feedback on their commits, we present a solution that tackles the problem

of the excessive execution time of test suites. This approach tries to solve this by selecting a set of test

cases that are more likely to generate fails given a new code submission. This set of selected tests

should be executed in a pre-commit stage (e.g., on a developer’s local machine), giving faster feedback

to developers on their (possible) faulty changes.

The solution proposed in this paper will be based on a Test Suite Selection using a Machine Learning

approach, using features related the test suite and code files changed. This features will be described

in detail further ahead.

Although, this thesis is integrated in an OutSystems environment, its conclusions should help future

applications of test suite selection approaches based on Machine Learning techniques.

1.2 Topic Overview

During software development there is a long and costly need for debugging. When doing so, a team

of developers need to write code, test it, commit it to their repository, and possibly correcting after the

execution of batches of tests. The practice of merging all developers’ working copies to a shared mainline

is referred to as Continuous Integration (CI). This process of CI is known to have various benefits, since

it helps developers catch bugs in the code earlier and companies to release new products/functionalities

twice as often as those who do not use CI [1].

1

As mentioned above, when a developer adds code to the repository, typically, these additions/

/changes need to go through a testing phase. The process of re-running functional and non-functional

tests (tests suites) to ensure that these newly modified files do not influence older functionalities and/or

under-perform, compared to older software, is described as Regression Testing.

So for a company like Google, which has two billion lines of code over nine million code files, sixteen

thousand commit changes per day, when running continuously four million tests, it is crucial to establish

workflows that make feasible managing and working productively [2].

To solve the problem of the increased cost in executing entire test suites, a number of different

approaches have been studied to maximize the value of the accrued test suite [3]:

• Test Minimization [4] aims to identify and remove redundant tests from the test suits.

• Test Prioritization aims to order test cases to maximize certain objectives such as fault/bug detec-

tion.

• Test Selection [5] seeks to identify the test cases based on relevance given a code change.

These approaches all serve the same purpose: they provide an alternative to the execution of all test

cases in a test suite, hence, reducing computational costs.

From these 3 approaches, at first sight Test Minimization can be considered the less efficient one,

since it only considers the relation between test cases’ coverage. On the other hand, Test Selection

and Test Prioritization approaches can take into account the relation between test cases and submitted

code. The first one selects a set of tests, from all of the tests. The second orders test cases to maximize,

for example, the number of tests executed in a time interval.

Since code changes may introduce faults to a repository, it is crucial to look at these changes and

their relation to the test case. This is why Test Selection and Test Prioritization can obtain more specific

results for each change when applied to a project, thus providing a more significant support in the CI

process of a company. Acknowledging the advantages of both approaches, the attention is shifted

towards implementation methodologies.

In recent literature, such as [5] and [4] there are examples of Test Selection and Minimization ap-

proaches using Machine Learning techniques. The authors use features such as test files historical

failure rates and number of contributors to a code file submission. The more relevant these features

are, the more precise the classifier will be classifying unseen data. In the context of our solution, the

selection of these datasets is very important, since it will aid the classifier model in the decision if a test

suite should be executed on a given file recently changed. To identify relevant features to include in

the training set, an intensive analysis of the OutSystems processes’ of CI and Regression Testing was

carried out.

Ideally, any new test failures would indicate regressions caused by the latest changes. However,

some test failures may not be due to the latest changes but due to non-determinism that test outcomes

are unpredictable. In other words the outcomes of an unmodified test, may differ at different times, given

the same code. These tests are often called flaky tests. A practical example of a flaky test can be a

2

test that tries to extract information from a remote server [6]. If there is no synchronization mechanisms,

where the test thread does not wait for the response of the server, and the response time varies, the test

thread may succeed or not in extracting the information. Thus, making the test non-deterministically fail

or pass.

1.3 OutSystems context

In the context of Test Selection at OutSystems, this thesis follows the thesis of 2 other students: Diogo

Oliveira [7] and Daniel Correia [8]. Diogo proposed solution is based on static and dynamic dependency

analysis between code and test files. Daniel presented a solution based on test coverage metrics [8].

The solution proposed by Diogo revealed some concerns regarding the mapping of the tests to the

code files, where external call from the tests were hard to track. Daniel’s solution revealed several

concerns regarding applicability to cross-language code changes (i.e., non C# files) and the scalability

bottleneck from coverage data extraction.

1.3.1 Test Selection

At OutSystems the process of re-running all tests for a given project takes up to 1 hour. In the CI process

of OutSystems (summarized in Fig.1.1), when developers submit code to their work repository, it needs

to go through a Build process. After this, if the build is successful, it is be assigned a Test Run, which

contains a suite of tests. This Test Run is run over the built project and afterwards it will return a ”report”

(Test Run Result) that includes which tests failed. Then the developers are notified, and proceed to

rectify (if needed) the code faults, which they are responsible for.

Figure 1.1: From code submission to code correction (OutSystems)

Given the complex product developed at OutSystems, which is constantly being upgraded, there are

several stages that represent different releases. Inside each stage, there are also different projects.

As mentioned above, when a project is successfully built, a Test Run containing test files are run over

this project. For a specific stage and project there is a Test Run assigned, which will test the built project

that includes the new changes. However, there is no selection process for the test cases in the Test

Run given a code change, meaning that if a Test Run is selected to test a built project, all of the the test

cases in it will be executed. Given the size increase of the code base at OutSystems, the number of the

test cases in each Test Run tends also to increase and consequently the time to test a successful Build

increases. In order to save time and resources of tests execution and help developers receive feedback

in a shorter period of time, Test Selection techniques represent a good option to aid in this recurrent

3

problem.

1.3.2 Flaky Tests

At OutSystems, flaky tests are identified in a more simple manner that does not require the re-running of

tests when these fail. By not re-running these tests, OutSystems saves some computational cost. The

way they do it is by analysing the behaviour of all tests during previous regression testing phases. As

mentioned before, OutSystems keeps an history of the outcome of all tests. By analysing the last 25

executions of a test, OutSystems ranks tests based on the intermittency in their executions. This ranking

is done based on the following metrics:

• 1 point every time a test passes with retry1.

• 2 points every time a test has the execution pattern pass-fail-pass.

The tests that ”score” the most points are considered to be more flaky than the others2. However,

this approach does not totally guarantee that the tests marked are indeed flaky, because the executions

analysis does not take into account the code which the test was covering. One test may get a high

ranking only by ”scoring” only on the second metric above. And there is no guarantee that the test

is not failing due to faults introduced by changes in the code. The main purpose of this approach,

at OutSystems, is to let developers know which tests, in the present, have been showing the most

intermittence and encourage them to rectify these tests.

1.3.3 Innocent Commits

At OutSystems, developers commit changes to the same branch of code over where sequential test

executions occur sequentially every time a commit arrives. Therefore, it may happen that a commit

reports failing tests that were already failing due to a previous commit. In this case, this commit should

be tagged as an innocent commit for the purpose of evaluating the prediction accuracy of the classifier

fairly since the code change was not related with the tests that failed.

In [8], Daniel Correia applied the concept of innocent commits, by identifying and filter them in his

data sets. He presents one strategy to identify innocent commits in a set of multiple commits, which he

called Superset. The ”rule” of this strategy is ”if the previous commit’s set of failing tests is a super set of

the current commit’s, then the current commit is innocent”. Putting it in a simpler way, for a commit to be

innocent its set of failing tests has to be in the set of failing tests from the previous commit. Therefore, to

identify innocent commits following the Superset strategy, it is necessary to iteratively compare the set

of failing tests from one commit to the previous one. Table 1.1 shows an application of this strategy.

When not applied any strategy to identify innocent commits, we classify every single commit as guilty.

When using the SuperSet strategy, as the figure shows, Commits 3, 5 and 6 can be ”set free of guilt”.

Lets analyze every iteration of the strategy:

1Important to mention that when a test file fails, it is immediately set for another execution (retry).
2The score can only be as high as 25, given that only the last 25 executions are analysed

4

Table 1.1: Example of the application of the SuperSet Strategy

• Commit 1 - not classified: it is out first commit, therefore we dont classify it, because we have no

terms of comparison;

• Commit 2 - guilty: Test B does not fail in Commit 1;

• Commit 3 - innocent: Test A and B both fail in Commit 2;

• Commit 4 - guilty: Test C does not fail in Commit 3;

• Commit 5 - innocent: Test C fail in Commit 4;

• Commit 6 - innocent: Test C fail in Commit 5;

1.4 Objectives

Given the OutSystems context of this thesis, it aims to assist in two aspects of the CI process at Out-

Systems:

• Primarily, reduce the time of the developers’ feedback loop, i.e., the time that developers need to

wait to receive feedback on which tests failed for their newly submitted commits.

• Secondly, reduce the computational costs of the current method of OutSystems’ regression testing

process, of re-running the entire test suite for a set of commits.

In a Test Selection point of view, the solution’s aspirations is to select a subset of tests from the

test suite, which can detect the same faults (or close) as the current method (re-run all). In a Test

Prioritization point of view, the tool should be able to maximize the time saved in the execution of all

tests and the correctly identified failing tests.

1.5 Thesis Outline

This thesis is organized in 7 sections which can be summarized as follows:

1. Introduction: provides an overview of the motivation for this work and a summary of the proposed

approach.

2. Background: explains the theoretical concepts required to understand the identified research

problem and the proposed approach.

5

3. Related Work: provides an overview of the state-of-art regression test selection techniques, fea-

ture selection and flaky tests with an emphasis on approaches that use Supervised Learning.

4. Solution Proposal: describes the analysis done of the OutSystems processes’ of CI and Regres-

sion Testing, as well as the architecture of the proposed solution for this problem.

5. Implementation: provides an overview of the processes which lead to the construction of the

proposed solution.

6. Results: provides the results obtained in the proposed solution.

7. Conclusions: contains the evaluation methodologies to be used in this work and discussion re-

garding the performance.

6

Chapter 2

Background

In this section, there will be an explanation about the main concepts of this thesis and also the context

of some of these concepts inside the internal processes at OutSystems.

2.1 Test Selection

Test Suite Selection belongs to a set of approaches that try to solve the problems that derive from the

Regression Testing process, by identifying the relevant test cases given a code change. Yo et al. in [3]

formally defined the problem of Test Selection as follows:

Input : Program (P); Modified version of P(P’); Test Suite (T).

Objective: Find the subset of T (T’), with which to test P’, which contains all the test cases that will

reveal faults in P’.

This problem can be transformed into a well-known problem, that belongs to the class of NP-

Complete problems: the Set-Cover problem. The Set-Cover problem is defined as follows:

Input : Universe (U={u1,u2,...,un}); Subsets (S={s1,s2,...,sk} ⊆ U).

Objective: Find a set of Subsets (S’) that minimizes the number of Subsets selected, such that the

Subsets in S’ covers the whole Universe U.

By analysing the two problem definitions and the definition for the best subset T’, one should be able

to reduce the Set-Cover problem to the Test Selection problem by:

• Defining the Universe U as the Test Suite, so U={t1,t2,...tn};

• Defining each Subset S as only one test case, i.e., s1=t1, s2=t2, etc.

Given this, the problem objective would be defined as finding the smallest set of S, such that this set

includes every test case that will reveal all faults in P’.

Given the above problem reduction, the Test Selection problem is proved to be NP-Complete, which

are not solvable in polynomial time.

In the industrial context, the common base approach to this problem is to do no selection at all and

execute all tests in a test suite. This approach is often called ”Retest All”. However, in recent literature it

7

was presented some more elaborate approaches to prevent the large amount of time and computation

costs that this approach requires in large software repositories.

Gligoric et al. in [9] proposes a regression testing technique that dynamically identifies the test files

(subset S) that should be executed given a code change (Modified version of P - P’). By analysing

dependencies of tests on files, Ekstazi collects a set of code files that are accessed during the execution

of the tests. Then, it detects affected test files by checking if the code files selected changed.

Machalica et al. in [5] proposes a predictive test selection strategy using machine learning tech-

niques. This model tries to predict the outcome of a test execution over some changes (passed or fail),

based on historical test outcomes. Ultimately, this model helps selecting a subset of tests to exercise on

a particular code change.

2.2 Supervised Learning

Supervised Learning is the process of learning a function that maps input variables to its classes, based

on example variable-class pairs. An algorithm analyses these pairs and learns a function (model clas-

sifier), which can be used to map a future unseen data point to its unknown class. More specifically,

given that OutSystems stores data regarding the outcome (test failed or passed) of old test regression

processes, the approach developed during this thesis used this class-labelled data to train a Supervised

Learning classifier. Kotsiantis in [10] describes the process of supervised learning which is summarized

in Fig.2.1.

Figure 2.1: Processes of Supervised Learning

The first step in Supervised Learning is to select a data set consisting on a training set and a testing

set. This data set needs to aggregate information about data points features and the class to which

these data points belong.

Once the Supervised Learning algorithm is selected, the process of training is done by providing the

selected training set to the algorithm, which generates a model classifier.

Once trained, the classifier is tested by using it on the different set of data points, the testing set. If

the classifier was able to truly capture the relationship between variable features and class, during its

training over the training data, it should be able to predict the classes of new unseen data. However,

if the results show a significant error rate, we must return to a previous stage of the supervised ML

process. Two examples that can lead to unsatisfactory results are the small size of the training set and

the low relevance of the features used [10].

In this phase of the Supervised Learning, the procedure it is to perform multiple iterations over

multiple algorithms to see which algorithms shows the best results.

8

However, the algorithms that are used to generate the model classifier have different parameters,

each one possibly taking various values. So, to improve the accuracy of these algorithms, an important

step is to perform a parameter selection for them, refereed as Hyper Parameter Tuning. The idea behind

this process is, to also, iterate over different sets of algorithms’ parameters by generating a model

classifier and test it with the testing set. By making use of Practical Bayesian Optimizations [11] we can

find the model classifier that shows the best results.

One thing important to notice, the goal for two problems can be different, i.e., in one of them the

model’s classifier objective may be to have a high recall values in deterioration of precision and in the

other the model’s classifier objective may be to balance out recall and precision. So, during the results

evaluation, it is crucial to evaluate properly the results given the objectives of the problem context.

2.3 Algorithm Selection

Supervised Learning can be divided into two types: Regression and Classification. The difference

between them is the type of the output. Regression algorithms learn a function that maps input variables

to numerical or continuous output variables. Classification algorithms learn a function that maps input

variables to discrete or categorical output variables. Given the problem context described in this paper,

the following part of this section will focus on classification algorithms.

There are many cases of Classification algorithms used in various fields. Solomatine et al. in [12]

compares the performance of these algorithms applied to Hydrologic forecasting. Pereira et al. in [13]

describes the various stages in a Machine Learning classifier of functional Magnetic Resonance Imaging

(fMRI). Kotsiantis in [10] reviews multiple classification algorithms, comparing their features, such as

speed of classification, tolerance to missing values, noise and redundant attributes. Given their insight,

next in this section, it will be described some of the algorithms studied: Decision Trees, Artificial Neural

Networks and K-Nearest Neighbour.

Decision Tree: Decision tree builds classification models in the form of a tree structure. This tree is

composed by nodes and branches. Each node represents a feature in an variable to be classified, and

each branch represents a value that the node can assume.

The construction of the tree is done recursively by breaking the data set into smaller and smaller

subsets, until all the features are represented by a node in the tree. In each iteration, the algorithm uses

some method to find the feature that best divides the data set. There are numerous methods to do this

search such as information gain [14], which is based on the decrease in entropy after a data-set is split

on an attribute, gini index [15], which estimate each feature independently, and ReliefF algorithm [16]

that estimates features in the context of other features.

Decision trees are prone to overfit by creating too many branches. This will most likely lead to a poor

performance when faced with unseen data. There are two ways of dealing with this problem: pre-pruning

the decision tree by not allowing it to grow to its full size; or post-pruning, which removes branches from

the fully grown tree and assigns nodes to the most common class of the training variables.

Artificial Neural Network: An Artificial Neural Network (ANN’s) is inspired by the way the biological

9

nervous system, such as the brain, process information [17]. It is composed of large number of highly

interconnected processing units (neurons). These units are usually segregated into three classes: input

units, which receive information to be processed; output units, where the results of the processing are

found; and units in between known as hidden units.

ANN’s can be divided into feed-forward and recurrent classes according to their connectivity. Feed-

forward ANN’s allow signals to travel one way only, from input to output. Recurrent ANN’s allow signals

to travel in both ways, by introducing loops in the network.

Considering a feed-forward ANN, with only one layer of hidden units. Each input unit has an activation

value that represents some feature from a data set. The way information flows through a ANN is done

by propagating this activation values to each of the hidden units to which each input unit is connected.

Then, each of these hidden units calculates its own activation value and passes it to the output units.

The activation values for each receiving unit is calculated according to a simple activation function,

which takes into account contributions of all sending units. The contribution of a unit is defined as

the weight of the connection between the sending and receiving units multiplied by the sending unit’s

activation value.

The training of a ANN can be conducted by applying different algorithms, which differ from each

other in the way they estimate the weight values of the connections between sending and receiving

units. Back-Propagation is one of these algorithms and is described by Kotsiantis et al. in [10]. After

the calculation of the output units values, given a training set, these predicted values are compared to

the actual ones. Based on the difference between the actual value and the predicted value, an error

value is computed, given a set cost function, and back-propagated through the network. At each layer

the weights are adjusted given the error so that the cost function is minimized. This process is repeated

until a defined termination criteria is achieved (number of iterations or achieving a certain loss value for

e.g.).

K-Nearest Neighbour: K-Nearest Neighbor is an instance-based classifier which maps all variables

in a training set to a n-dimensional space [18]. The dimension of this space depends on the number

of features of the variables in the training set. KNN is based on the principle that variables with similar

properties will exist close in a dimensional space.

Given a value k, when the algorithm receives an unseen variable, it analyses k number of variables

that have the most in common with the new variable, maps it close to them and returns the most common

class (of those k variables) as the class of the received variable.

When the algorithm maps a new variable close to similar ones, it uses a distance metric. The idea of

this metric is to minimize distance between similarly classified variables, while maximizing the distance

between variables of different classes.

Ensemble Learning: However, when the classifier models created by the described algorithms are

used, they might not perform so well by themselves. This weak performance is derived from having

high bias (underfitting) or too much variance (overfitting) which can be related to the quantity of data or

dimensionality of the space. These models are often called weak learners.

To deal with this problem, what is often done is combine multiple models in order to avoid under

10

and overfitting. By assembling multiple models, we obtain a ”stronger” learner with better performances.

This process of combining models by training them to solve the same problem, is referred as Ensemble

Learning [19].

For the sake of setting up an ensemble method, two things are needed: select the base models to

be aggregated; and select an algorithm to combine the base models selected.

Given the possible disparity in single base models performance, the combination between base

models shows great potential. If the chosen base models have low bias but high variance, the combining

algorithm should tend to reduce variance. Whereas, if the base models have high bias and low variance,

the combining algorithm should tend to reduce bias. Regarding aggregation algorithms, there are 3

kinds: Bagging, Boosting and Stacking.

Bagging [20] makes use of bootstrapping approaches to create samples of the initial dataset (which

are considered to be representative and independent of the distribution of the initial dataset) to train

several base models in a parallel way. After the training, the final ensemble model results from averaging

the results of these base models.

Since Bagging methods utilize bootstrapping, the ensemble models that these methods produce

have a lower variance. This is due to the fact that the samples on which the base models are trained are

approximately independent and identically distributed, and so the resulted improved models.

One variation of the bagging method is Random Forests, which implement deep trees as base

models [21]. This variation produces even more robust models because the bootstrap samples are

created by sampling over the observation in the dataset (as in normal bagging) and over features, making

each tree much more unique. Thus, reducing even more the variance in the final ensemble model.

On the other hand, the idea of Boosting [22] is to train the base models sequentially. Opposite to

Bagging (in terms of bootstrap and parallelisation techniques), Boosting takes into account the original

dataset and, iteratively, trains the base model, aggregates it in a ensemble model and updates the

training dataset. This update serves as a guideline for the training of the next base model, taking into

account the strengths and weakness of the current ensemble model. This process of constant adaptation

is what allows the boosting algorithms to have a lower bias than the models by which they are composed.

The most popular Boosting algorithms are Adaptive Boosting [23] and Gradient Boosting [24]. These

algorithms differ on how they create and aggregate the base models during the sequential process.

Adaptive Boosting updates the weights attached to each of the training dataset observations, whereas

Gradient Boosting updates the value of these observations. Other example of boosting algorithms is

XGBoost [5]

In the literature, ensemble models are proved to highly outperform single models [25]. When compar-

ing Bagging and Boosting methods, Bagging slightly outperforms Boosting, because the second method

often overfits and is not able to deal as well with noise [25, 26]. However, authors say that when properly

applied, Boosting may be more accurate and achieve better results.

Kotstiantis et al. in [10] describes the process of applying supervised ML to a real-world problem,

where they review multiple classification algorithms. The algorithms include Decision Trees, Artificial

Neural Networks, Naive Bayes, K-Nearest Neighbors, Support Vector Machines and Rule-learners.

11

They compare the performance of these algorithms, based on empirical and theoretical studies. The

algorithms which scored the best overall accuracy were Support Vector Machines and Neural Networks.

Although this overall classification, the authors state that the selection of the best algorithm differs from

each application problem. Also, they introduce the concept of combining classifiers as a new direction

for the improvement of the performance of individual classification algorithms.

2.4 Hyper Parameter Tuning

Every algorithm used to generate ML classifiers depend on various parameters. When using any al-

gorithm with default parameter values, the results might not be the optimal ones. Hence, finding the

optimal parameter set for an algorithm, i.e., the set of parameters that maximize the results for a specific

problem, is a crucial step in classifier training. The domain of a hyper parameter can be real-valued,

integer valued, binary or categorical. For integer and real-valued hyper parameters, the domains are

mostly bounded for practical reasons.

Moreover, the use of certain hyper parameters might be conditioned to the use of others. Conse-

quently, when choosing a set of parameters to use in an classifier algorithm it is necessary to be aware

of these nuances.

In order to accomplish the best results in a classification training process, Hyper Parameter Tuning

is used to find the best possible set of hyper parameters for a given algorithm. The objective underlined

by each Hyper Parameter Tuning technique is to train iteratively a classifier, by selecting the hyper

parameters from a pre-defined set, constructed by the user, and returning the values for each hyper

parameter with which the classifier showed the best results.

The most common Hyper Parameter Tuning techniques are Grid Search, Random Search and

Bayesian Search.

The first one is the most straightforward, where every possible combination of hyper parameters in

the pre-defined set are used. Using this technique with small sets may be advantageous, but as the

number of values for each hyper parameter increases, so does the computational cost to run all these

iterations. And so, time consumption is a huge concern regarding the usage of this technique.

To battle the time cost of the previous technique, Random Search trains the classifier by selecting

random hyper parameter combinations from the searchable space (all combinations from the pre-defined

set). The underlying problem with this technique is that there is no way to know if the returned set of

hyper parameter values are the best combination.

The final technique Bayesian Search complements the previous tecnhique in a way that the selection

of the next hyper parameter values are not chosen at random. Baeyasian Search makes use of the

Bayes Principle and has 2 essential componets: a probabilistic surrogate model and an acquisition

function to decide which point to evaluate next. In each iteration, the surrogate model is fitted to all

observations of the target function made so far. Then the acquisition function, which uses the bays

Principle , determines the utility of different candidate points [27]. In other words, Bayesian Search

considers previous knowledge to make a decision, overcomming the randomness present in Random

12

Search. Usually, this technique sits in between the 2 previous techniques in terms of execution time.

2.5 Unbalanced data sets

When building data sets which are used for classifier training, one aspect to have in mind is that depend-

ing on the problem one is trying to solve, these data sets may be unbalanced. This means that there is a

class in the data set that has a majority of examples. For example, in fraud detection problems, the data

sets created are expected to be unbalanced given that in real life the non-fraudulent examples heavily

dominates the fraudulent ones [28].

The problem that lies with unbalancing data sets is that classifier may become to bias towards the

examples from the majority class, by not learning what makes the minority class “different” and fails

to understand the underlying patterns that distinguish the classes. Then, the algorithm is prone to

overfitting the majority class and it will have the tendency to just predict the majority class. These

classifiers will have a high score on their loss-functions, which can lead to the Accuracy Paradox: the

finding that accuracy is not a good metric for predictive classifier models.

The solution to this problem lies in balancing the data sets and there 2 major classes of techniques:

Over and under sampling techniques.

Over sampling consists in increasing the number of examples from the minority class. Since it is

impossible to create minority class examples, the process requires the creation of copies of the minority

class so that its cardinality closely matches the majority class. SMOTE, ADASYN and Random over-

sampling are some examples of this technique.

Contrarily, under sampling consists in decreasing the size of the majority class sample by selecting

random samples from this class until it reaches the cardinality of the minority class. One Sided Selection,

Neighbourhood Cleaning Rule and Tomek Links are some examples of this technique.

2.6 Flaky Tests

In a perfect world, the outcome of a test execution should not differ given the same code change.

However some tests may behave in a non-deterministic way, which can hinder the work of a developer.

These tests are called flaky tests.

When a developer is notified about some code file changes that failed in regression testing phase,

s/he needs to rectify the code submitted. One of the problems that arise with flaky tests, is that devel-

opers may waste time correcting a code change that had no errors, where the failed test that ”flagged”

said code file was flaky.

Besides the problem mentioned above, Luo et al. in [6] mentions two more problems associated with

flaky tests:

• Flaky tests may also hide real failures, in case the developer thinks one failure is the result of a

flaky test, thus ignoring real bugs.

13

• Test failures caused by flaky tests can be hard to reproduce due to their non-determinism.

Flaky tests may be derived from various sources, such as execution of asynchronous calls, thread

concurrency or test order dependencies. There are different techniques to deal with each of these

causes, such as implementation of waitFor calls, addition of locks and merging tests with high level of

dependencies, respectively.

When faced with flaky tests, a company can do 2 things: fix these tests or learn to live with them. The

flaky tests may be fixed, thus removing the flakiness of the regression testing process. However this so-

lution can sometimes go only to a certain point. If by removing the flakiness, developers are jeopardizing

future tests by not testing certain functionalities, then the process of testing loses its purpose.

And so, companies can adapt to the existence of flaky tests by identifying these tests, prior to test

execution, and mark them as flaky. This way, when developers are correcting their code, they can give

priority to the tests other than those marked as flaky, and focus first in these tests.

So that, when developers are notified about some faulty changes, if the test/s that failed were marked

as flaky, they can give priority to tests other focus on other tests they can assume that said faulty change

is not guilty for the failing of the tests.

The most common approach to find flaky tests is to re-run tests multiple times against the same

code. If in these re-run process, the tests show incoherence, i.e., they fail and pass at different times,

they are marked as flaky.

Google [29] uses this method, where if a test fails on some code, the test is re-run 10 times. If it

passes on any of these times, the test is considered flaky. Machalica et al. in [5] also adopted this flaky

tests identification method in their testing selection approach.

14

Chapter 3

Related Work

In the next section it will be presented an overview of the state-of-art techniques related to the most

important subjects of this paper: Test Suite Selection, Feature Selection and Flaky Tests.

3.1 Test Suite Selection

Rothermel et al. in [30] provides insight on the issues in regression testing selection (RTS) techniques

and presents a framework to classify these techniques which is based on four categories:

• Inclusiveness - capability of the RTS to capture modification-revealing tests, i.e., tests that have a

different outcome given a new change.

• Precision - capability of the RTS not selecting tests that are not modification-revealing.

• Efficiency - measures the space and time requirements of an RTS.

• Generality - capability of the RTS to adapt to real world situations (for e.g. handle realistic program

modifications).

Wei et al. in [31] present a study regarding the effectiveness of a test coverage quality metric (branch

coverage) on software testing. The intuition is that covering branches relates directly to uncovering

faults. However, the results obtained by the authors show that branch coverage is not a good indicator

for the effectiveness of a test suite, where the correlation between branch coverage and the number of

uncovered faults reveals to be weak.

In order to complement this work, Daniel Correia in [8] proposes a test selection tool which pairs

a test suite diagnosability metric, called DDU1 with historical metrics of test files. In his results, given

the multiple challenges presented such as multiple language code and the scalability bottleneck from

coverage data extraction, Daniel’s tool was still able to reduce the feedback time by making reasonable

selections given the size of the code changes.

1DDU is an acronym for Density-Diversity-Uniqueness

15

Gligoric et al. in [9] proposes a RTS technique called Ekstazi. This technique tracks dynamic file

dependencies of tests on files, which does not require integration with version-control systems. Ekstazi,

while keeping track of the dependent code files for each test file (dependency files), performs regression

testing in 3 phases: (1) In each revision, for each test file, Ekstazi checks if the checksums of the depen-

dent code files (in the dependency files) are still the same. If so, the test is not selected for execution.

(2) Ekstazi runs the test files selected in the previous phase. (3) Ekstazi monitors the execution of the

tests and the code under test to collect the set of code files accessed during execution of each test,

computes the checksum for these files and saves them in the corresponding dependency file. Ekstazi

uses file-level granularity to detect test dependencies and code changes, which showed better results

than techniques with finer granularity (class and method level).

Followed by their work, Legunsen et al. in [32] conducted an extensive study of static techniques.

The authors implemented two static regression testing techniques, one class-level and one method-

level, and compared several variants of these techniques. Comparing their techniques with Ekstazi, the

authors found that the class-level technique showed similar performance benefits, while the method-level

performed poorly.

Machalica et al. in [5] proposes a different predictive test selection strategy using machine learning

techniques. The authors make use of a data set of historical test outcomes to train a machine learning

classifier model. This model then tries to predict the outcome of a test execution over some changes

(passed or fail). Ultimately, this model will help selecting a subset of tests to exercise on a particular

code change. In their results the authors report that:

• They manage to catch over 95% of individual test failures and over 99.9% of faulty code changes

(a code change is marked faulty if any of the individual tests run in response to the code change

fails).

• The test selection procedure selects fewer than a third of the tests that would be selected on the

basis of build dependencies.

• They also succeeded in reducing the total infrastructure cost of change-based testing by a factor

of two.

However, the authors do not take into account the possibility of subsets of tests having overlapping

coverage and thus correlated results. Such addiction to the predictive strategy could produce even better

results.

Philip et al. in [4] present Fast-Lane, a system that performs data driven test minimization. Although

the authors describe Fast-Lane as test minimization system, their work shows similarities to test se-

lection techniques. The authors analyse, not only, test file logs as well has commit logs in order save

test resources and decreasing time-to-deployment. The authors based their work on three different

approaches towards predicting test outcomes and therefore saving test resources:

• Commit Risk Prediction - The authors train classification models to predict the complexity of a

commit, i.e., which commits are more ”risky” than others.

16

• Test Outcome-based Correlation - The authors learn association rules that find test-pairs that pass

together and fail together. Thus showing test-pairs that potentially test the same functionalities.

• Runtime-based Outcome Prediction - The authors estimate a runtime threshold for test files, i.e.,

they separate passed runs from failed runs based on their runtime.

The authors results show that their techniques can save a fifth of test-time while obtaining a test

outcome accuracy of 99.99%.

Inball et al. in [33] present a novel approach, called cOmponent Sensitive Cross project software fAult

pRediction model (OSCAR), for the cold-start problem in software fault prediction. This problem derives

from the lack of historical data about a project that is new. The authors create a fault prediction model

(belongingness classification model) for new software projects with no recorded history, by mapping a

software component to the most similar project among a set of old/recurring projects. Then, for each one

of the components of the new project, they predict whether it is faulty or not using the prediction model

of the most similar project. In their results, the authors compared OSCAR against existing state-of-

the art algorithms of cross-projects software fault prediction, where they achieved the highest accuracy

amongst all algorithms. They also highlight the importance of the belongingness classification, which

greatly affects the accuracy of OSCAR.

3.2 Feature Selection

Memon et al. in [34] present a study done at Google, which aims to reduce test workload by avoiding the

re-running of tests unlikely to fail. And second, to use test results to inform code development. Aided by

a dependency graph with a file-level granularity, the authors empirically studied relationships between

developers, their code and test cases. This lead to the formulation of several hypothesis which then

were examined. The authors managed to get some specific results and correlations within the context

of the Google database:

• Code files at higher distances than 10 from test files (in the dependency graph) do not cause test

failures on those test files.

• Code files more often changed are more likely to appear in commits that generate test failures.

• C++ files are more prone to cause test failures than Java files.

• Certain authors cause more test failures than others.

• Code files modified by multiple developers are more prone to test failures.

Philip et al. in [4] present FastLane, a system that performs data driven test minimization. Partic-

ularly, in their system, which is divided in three approaches, they resort to machine learning models to

learn a classifier that labels a commit as risky or safe. A commit is risky if it causes at least one test to

fail. A commit is safe if all tests run on it pass. To train the classifier, they used historical data about test

17

files and commits and used a total of 133 features to characterize commits, categorized in five types:

File type and counts, change frequency, ownership, developer/reviewer history and component risk. The

authors found that the file types, code hotspots2 and code ownership-based metrics increased the most

the accuracy of the classifier model.

Machalica et al. in [5] in their predictive Test Selection approach train a machine learning classifier.

Such a classifier is trained based on historical data. The classifier model is created based on three types

of features:

• Change-Level: Change history for files, number of files touched in a change, number of tests

triggered by a change, files extension and number of distinct authors.

• Test-Level: Historical failure rates, associated project name (or namespace) and number of tests.

• Cross-Features: distance (between test files and code files) in build dependency graph and lexical

distance between file paths (test and code files).

3.3 Flaky Tests

Machalica et al. in [5] filter flaky tests from a test suite by re-running a test ten times. They classify it

as flaky if all the runs aren’t coherent, i.e., if among all runs there are more than two different outcomes

(pass and fail). In their results, the authors report that, by filtering these tests before training and evalua-

tion of the classifier model, the accuracy of their model improves considerably, where its ability to ”catch”

failed tests does not decrease.

Bell et al. in [35] describe a new technique to identify flaky tests called DeFlaker. DeFlaker is able

to detect if a test failure is due to a flaky test without re-running it and with very low runtime overhead.

DeFlaker operates in three stages: (1) combining syntactic change information from Git, with structural

information from each program source file, DeFlaker identifies the program locations that changed; (2)

DeFlaker generates a coverage report that lists each changed line/class covered by each test. (3) In the

final stage, DeFlaker marks as flaky, tests in two situations: a test that changed from passed to failed

and did not cover any code that changed; or a test that changed from failed to pass and was executed

on unchanged code. The authors implemented DeFlaker for Java, integrating it with popular build and

test tools, and found 87 previously unknown flaky tests in recent projects and 4,846 flaky tests in old

projects.

2Components with high risk of failure generation

18

Chapter 4

Solution Proposal

In this chapter, we present the solution proposal to solve the problem that arises from the current regres-

sion testing approach at OutSystems. Along side with the goals for this solution proposal, we will also

present the concerns to potentially integrate it into the current OutSystems’ development processes.

Finally, the steps to achieve this solution will be described in the Solution Design chapter.

4.1 Goals

In order to help a developer maintain a more consistent work without having to wait this amount of time,

our goal is to select a sub set of tests, out of the entire set of tests, for the developers to run in their local

machines. This sub set of tests should reveal all faults given the developer’s most recent changes.

Currently, a developer at OutSystems has to wait, on average, 1 hour before receiving information

about which tests failed. Therefore, in order to include the proposed solution into the current OutSys-

tems’ development workflow, it needs to fulfill the following performance concerns:

• Execution time - It should execute fast enough so that it can be integrated into the existing devel-

opment workflow without significant overhead.

• Feedback loop time - The time to get feedback on changes should be much lower than the current

system (1 hour).

Something worth pinpointing is that the purpose of the solution is not to replace the current regression

testing process at OutSystems. Therefore, the use of the tool would be in a pre-commit stage. Meaning

that a developer finishes his/her work on the code base, then s/he runs the solution. It then returns the

sub set of tests that fail, given the modified code, for the developer to run on their local machines. After

observing the outcome of that sub set of tests (fail or pass) over the newly modified code, the developer

rectifies the code, if needed, and only then s/he proceeds to make a commit to the OutSystems code

repository. After the commit, the normal process of regression testing continues, where the entire set of

tests are run over the newly committed code.

19

4.2 Solution Design

The solution presented in this thesis focus on training a Machine Learning (ML) classifier. The optimal

solution for this classifier is to return the smallest subset of tests that reveal all faults given a set of

commits. In this section it will be described the various steps to achieve this classifier.

4.2.1 Data Set and Features definition

The first step to create a classifier is to define a data set. The data set needs to aggregate information

about the code files changes done by developers and the tests that are run over this code changes

(during the regression testing phase). So, each entry of the data set has features regarding the code

files submitted in one commit, one test run over those code files and the class of the entry corresponds

to the outcome of the test (pass or fail).

Table 4.1 shows an example of the data set (before the inclusion of the features) which will be used.

Table 4.1: Example of the structure of the data set before adding the features

The work done in [36], helped us understanding the features that made sense to include in the data

sets in the context of OutSystems. Of course, said work was backed by the latest literature regarding

Test Selection techniques guided by Machine Learning. Nonetheless, with the analysis performed to

the OutSystems’ CI and Regression Testing processes, it was possible to extract some initial statistics

related about test files, code files and commits. These statistics led us to some features and others were

added after. The following list describes each feature that made it into the data sets:

• Test failure rate - This feature relates to each test and refers to the number of times a test fails for

all its executions. The statistics showed that tests with a large number of executions have a lower

failure rate. This means that there are tests that are more prone to failing than others, thus the

inclusion of this feature in the data sets.

• Author failure rate - For this feature, we need to introduce a conceptual idea: The author (de-

veloper) guilt for one testrun is binary: if there are failing tests in the testrun the author is given

the guilt. If no tests fail, then the author is given no guilt.1 So, this feature relates to every author

and refers to the number of times an author is involved in failling testruns for all testruns linked to

s/he. Statistics showed that authors who have a smaller amount of commits tend to have a higher
1For easier description, from now on, testruns with at least one failing test will be refered as failling testruns.

20

percentage of failed commits and authors with more number of commits have a lower percent-

age of failed ones. One plausible explanation can be related to the authors’ experience. Authors

with more commits are more likely to work at OutSystems for a longer time, thus having more

experience, than authors who have less commits and possible being employees for a smaller time.

• File failure rate - This feature refers to the number of times a code file generates a failed testrun

compared to the total of times it is submitted to a testrun. Much as the previous feature, where an

author can get the blame for a failed testrun by only one test failing, the same happens for files. In

a testrun, if a single test fails, all of the code files linked to that testrun are blamed. Hence, keep

in mind that this statistic can be biased. For example, a testrun linked to 5 code files: even if only

one of them is responsible for the failure of a test, all of the code files will be assigned as ”guilty”,

then changing all failure rates.

• File/test failure rate - This feature is a combination of the File and Test failure rates. Test files

and code files are connected by obvious reasons: test files are basically code files that test the

functionality of code files. Lets take a software project as an example: we can think of the code files

as functionality nodes. And for each functionality there is a test file that assures that functionality

keeps working. Therefore, we can link code files to test files based on the functionality the tests

evaluate. Basically, this feature compares the number of times a test runs over a code file and fails

with the total number of runs between the test and code file.

• Author/file failure rate - Similarly to the previous feature, this feature compares the number of

times an author submits a code file and generates a failed testrun with the total number of submis-

sions of that code file by that author. We can also find a relation between the authors and the code

files submitted by them. In software companies, teams of developers are in charge of different

parts of the company product. Thus, certain teams are more used to work with certain code files

than others. This creates a pattern in these rate values, because each team will eventually have

low failure rates for the files it is more used to work with.

• Extension file type - The statistics showed that code files with different file extensions have dif-

ferent failure rates. More specifically, C# files lead to more failed tests. So if the machine learning

classifier model takes into account the extension of the file, it could help in the task of deciding if a

test should be run over a code file with a given extension.

• Tokens shared file/test - As seen before tests and code files are related. This feature takes into

account this relation but not from any failure rate. It compares the name’s test with a code file’s

name. In software testing, it is instinctive to name the test after the code file or the functionality it is

testing. At OutSystems, tests have the characters ”.” separating its name. Code files on the other

hand have the character ”/” delimiting the various directories from which it belongs. So, to capture

possible relations between both, we split test and code files by these characters and compare the

sub-strings(tokens) of both to see how much they are related. The more tokens they share, the

more related they should be.

21

• Number of distinct files changed - This feature simply determines the number of code files

submitted by an author in the commit stage. The statistics showed a counter intuitive pattern:

as the size of the author’s commit increases the failure of those commits decreases. It would be

expected that the more files an author submits the more probability there is to generate a failing

test. However the opposite happens, which can be explained by the fact that developers might be

more meticulous when committing a large amount of code files.

• Number of distinct authors - One important detail, which will be explained in detail in the next

chapter is that, during the regression testing process at OutSystems, multiple commits can be

aggregated into the the same testrun. For this reason, when the tests run over newly submitted

code, it may happen that the code which is being tested is the product of the work of multiple

authors. For this reason, one feature that can be helpful in predicting the outcome of a test is the

number of authors linked to one testrun.

• File change history - This feature represents the frequency which a code file is submitted by

authors. Normally, there are 2 scenarios to when a code file is submitted multiple times in short

period of times: there is new functionalities consistently being added through that code file; or

there is something wrong with it and it is generating unwanted failing tests. The statistics showed

that the percentage of commits which generate test failures increases with code files that are more

times submitted. To turn this feature more diversified, we pre-define 3 time intervals, previous to

the date of a commit and calculate 3 different values for this feature for each code file. This way,

we reduce the bias towards code files with a high change history from a long time ago (for example

2 months), when in the last 10 days was never submitted.

• Test failure rate history - This feature presents the same purpose of the Test failure rate feature,

however, like the previous feature we pre-define 3 time intervals. This way, tests that have a high

failure rate from a long period in the past, do not get falsely blame when show a lower failure rate

in a near past. By creating the different time-intervals, we generate 3 different features depending

on each one.

• File failure rate history - This feature presents the same purpose of the code file failure rate

feature, but similarly to the previous feature we try to reduce bias towards code files with high failure

rate from a long period in the past, and pre-define 3 time intervals. The same way as the previous

feature, by creating the different time-intervals, we generate 3 different features depending on each

one.

Flaky tests and innocent commits are also be taken in consideration. So in total we will have 3 data

sets to train to train the ML classifier: The unfiltered data set (No-filter data set), the data set filtered by

flaky tests (Flaky-filter data set) and the data set filtered by innocent commits (Innocent-filter data set).

Flaky tests: Each day, OutSystems identifies a set of flaky tests. Therefore, for each day, the flaky

tests will be removed from the data set. This removal effect will be studied similar to what was done

22

in [5], where, basically, the prediction accuracy of the classifier is analyzed by filtering the original data

set and excluding the flaky tests.

Innocent commits: Similarly, the same will be done regarding innocent commits. Using the strategy

Superset, explained in section 1.3.3, the innocent commits are excluded from the No-filter data set and

the prediction accuracy of the classifier is analyzed.

4.2.2 Classifier Models’ Training and Tuning

Once the data sets are created we need to select the algorithms to create the classifiers models.

Classifier Models’ Baseline: Given the amount of algorithms from which to choose to create this

classifier, we make a pre-selection of several algorithms. Each of these algorithms will produce a clas-

sifier by training the algorithms with the training set (No-filter data set). After the classifiers generation,

each of them will be evaluated with the testing set (No-filter data set). The classifiers which show the

best results will be chosen for the next steps of the solution pipeline production.

Hyper Parameter Tuning: Every algorithm used to create the classifiers depend on various param-

eters. Therefore, these parameters can influence the results shown by the classifiers. For this reason,

for the classifiers that showed the best results in the Baseline section, we perform an hyper parameter

tuning for these classifiers’ algorithms. During this tuning process, the classifier is trained and evaluated

iteratively with different sets of parameters. In the end of the process, we end with the best parameters

for each algorithm, given the different set of parameters supplied. Important to notice that the parame-

ters which we end up may not be the optimal ones. The following picture shows an example of the set

of parameters used in the hyper parameter tuning of the Balanced Random Forest algorithm.

Given that we have 3 different data sets, for each classifier algorithm, we perform 3 hyper parameter

tunings, where each of them are trained and evaluated with each of the data sets. This way, each

process of tuning may come up with its own parameters, different from the others, eliminating bias from

the parameters used.

23

24

Chapter 5

Implementation

In this chapter we present the processes of data gathering for the data sets’ assembly, calculation of

features values and training of the ML classifiers. For each process mentioned, we also present the

challenges faced and the decisions made. A ML classifier is a function which maps input variables

to discrete output variables. In this context, the optimal classifier model is the one which selects the

smallest set of tests which reveal all faults for a given code change.

5.1 Overview

The proposed solution was designed in the context of OutSystems’ code base and CI pipeline and is

organized into three main groups:

1. Data sets creation: process of data extraction from the OutSystems database regarding the

developers commits. As mentioned in the previous chapter, there are 2 additional data sets created

for this solution (innocent/flaky filter data sets). The process of the creation of these 2 data sets is

also explained.

2. Features data extraction: process of gathering historical data about commits, developers, code

and test files, calculation and appending of features values to the existing data sets.

3. Classifier models generation: process of creation of the classifier models’ baseline and hyper

parameter tuning of those classifier models.

Fig. 5.1 resumes the procedures which lead to the solution conception.

5.1.1 Data sets creation

In order to build our data sets with data from OutSystems, we first need to understand the structures

behind the OutSystems processes’ of CI and Regression Testing. Recalling the OutSystems’ CI process

described earlier, OutSystems’ database stores information regarding developers commits, test suites to

25

Figure 5.1: Steps of the solution’s implementation

test newly added (or changed) code and the result of the execution of these test suites. The database’s

tables relevant to create the data sets are the ones shown in Fig. 5.2.

Figure 5.2: Simplified view of the relevant database tables

• OS Commit - contains information about a commit done by some author. The ”Changelog” pa-

rameter contains the code files submitted in each commit.

• OS Build - contains information about commits that were assigned to a given build process.

• OS TestRun - contains the information about a test suite executed over a given Build.

• OS TestRunResult - contains, in each row, the test files which were executed in a given TestRun

and their outcome (Failing - pass or failed).

To build our data sets we need to merge the information from all tables based on the common param-

eters between them. Fig. 5.2 shows which parameters of the tables can be used to relate these tables.

For example, we merge the tables OS Commit and OS Build through the parameters Revision and

Build Revision. The information relevant to build the data sets are the parameters Author, Changelog,

DateTime, TestRunId, StageName, TestName and Failing.

The first step is to retrieve the list of commits done during the desired period. The following SQL

query was used to retrieve commits data from the OS Commit table, where we use the parameter

”Date Time” to filter the query’s result, so it matches the timeline defined.

SELECT Author, Changelog, Revision, Date_Time

FROM OS_Commit

WHERE Date_Time < date_lower_limit

and Date_Time > date_upper_limit

ORDER BY Date_Time;

26

The second step is to retrieve data from the OS Build table. To do this, we need to analyze the results

from the query performed on the first table and check the lower and upper bounds for the ”Revision”

values. Given that this second table does not store any information about the date of the Build, we need

to filter the result based on those upper and lower bound values from the previous query results. The

SQL query used to retrieve builds data from the OS Build table is presented next.

SELECT ID, Build_Revision

FROM OS_Build

WHERE Build_Revision < revision_lower_limit

and Build_Revision > revision_upper_limit

The third and fourth step consist on retrieving data from the tables OS TestRun and OS TestRun

Result. The same way we used ”Revision ID” to filter the results from the query on the second table to

obtain the data we need from OS Build, we will use ”Build ID” and ”TestRun ID” to filter the results of

the queries on the OS TestRun and OS TestRunResult tables, respectively. The SQL queries used to

retrieve data from those tables are presented next, respectively.

SELECT ID, Build_ID, Stage_Name

FROM OS_TestRun

WHERE Build_ID < build_lower_limit

and Build_ID > build_upper_limit

SELECT ID, TestRun_ID, Test_Name, Failing

FROM OS_TestRunResult

WHERE TestRun_ID < testrun_lower_limit

and TestRun_ID > testrun_upper_limit

After collecting the data from this tables, the next step is to merge the information from all tables.

Since all tables have parameters in common, we can merge them by these parameters.

During this step of the solution construction, one detail presented itself as a problem. Upon analysing

the results from the queries on the first 3 tables, we noticed that not all Revision values (from ta-

ble OS Commit) appeared in the OS Build table. The same happened with Build ID values in the

OS TestRun table. After some investigation, we come to the conclusion that various commits may be

aggregated into the same Build, and the same for various Builds that are aggregated into the same

TestRun. This is due to the constant submission of code by developers. And, in order not to waste com-

putational resources on every code change individually, commits and builds are aggregated. Therefore

to deal with the problem of missing revisions and builds, something was done.

So, in the end we can see that, because commits and builds may be aggregated, a test’s outcome of

one TestRun may not depend exclusively on one commit. Instead, they may depend on the aggregate

of builds, which may be composed by various commits. Hence, when building our data set we must

concatenate all ”Changelogs” and ”Authors” from commits which are assigned to the same ”TestRun ID”.

27

Now that we have our data set (no-filter data set), the next step is to create the two filtered data sets

(Flaky-filter and Innocent-filter data sets) by filtering the original one.

In the previous chapter, we introduced the strategy SuperSet to find the innocent testruns1 in our

original data set. During this process, one thing to remind is that each testrun corresponds to one stage

of tests. As mentioned before, we are only including tests from stages Development and CorePlatform

in our data sets and these stages are run sequentially for every new set of changelogs. Therefore,

when calculating the innocent testruns we can only compare testruns which belong to the same stage,

because the tests from each stage are unique from that stage.

Given the explanation above, the process of selecting the innocent testruns is performed separated

for each stage and will be explained for only one stage, once the processes are homologous. First

we need to aggregate the tests that fail in each testrun (lets say in a Python list, where each element

contains the failing tests for each testrun). Then, we iterate over this list and compare each element with

the previous one and set a condition: ”if the previous set of failing tests is a super set of the current’s

one”, then we save the current testrun. After this cycle, we end up set of saved testruns (the innocent

testruns). The final step is to filter the original data set, where we iterate over the same and maintain

only the testruns that do not show in the set of innocent testruns saved in the previous step (from both

stages). Therefore we end up with a data set which only contains the guilty testruns, thus the innocent-

filter data set.

The process of creation of the flaky-filter data set is a little trickier. As mentioned in a previous

section, at OutSystems the flaky tests are identified everyday at midnight. Hence, to build our flaky-filter

data set, first we need to retrieve the data relative to the flaky tests from the OutSystems database.

Given the time period of which we built our original data set, we only need to retrieve the flaky tests from

March 1st 2020 to April 8th 2020.

The result from the query to the OutSystems’ database (lets call it flaky table) is a table with the tests

marked as flaky for every day in the time interval referred above. The next step is to iterate over the

original data set and for each element check if the test name and the day of the datetime match any

entry in the flaky table. If so, we remove that entry from the original data set. In the end of this iteration,

we end up with a data set free of flaky tests, thus the flaky-filter data set.

5.1.2 Features data extraction

The features that our data sets will include were described in 4.2.1. In this section the process of the

calculation of all these features will be explained. Also, this process is preceded by some data extraction,

which will also be explained.

The majority of the features selected to be part of the data sets are dynamic, i.e., they can be

constantly updated such as Test and Author Failure Rates, given that over time they change. Unlike

features such as the number of distinct authors which is static, where this simply requires counting the

size of the Author column in our data sets table.

1As we explained earlier in this chapter, testruns may aggregate more than one commit. For this reason, from now on, we will
use the term innocent/guilty testrun, instead of innocent/guilty commit

28

In order not to have these features’ values starting from zero, we calculate baseline values for these

features based on previous time intervals from the testruns included in the data sets. Similar to what

was done to build the data sets, for this process we basically build an identical data set from previous

time intervals (baseline data set).

After building this baseline data set, then we start to iterate over the data sets and calculating/

updating the features values given the outcome of the test in each entry. One important detail during

the process of calculation and updating dynamic features values is that we need to assign to each entry

values that only take into account previous testruns, excluding the test outcome of the current entry.

Thus, in each iteration we calculate the value for each feature and only then we update its value given

the test outcome of the test of that iteration.

The procedure for every feature calculation will be described next in more detail. Also, the procedure

is exactly the same for the different data sets, whether if we want to get the features for one specific data

set, we just iterate over that same data set.

Test Failure Rate: For this feature, we save 2 values during the baseline values calculation for each

test: Numbers of total testruns(1) and failed testruns(2). In each iteration over our data sets, there is

only one name in the ”Test” column, hence we assign that test’s failure rate based on the values saved

previously. So basically, in each iteration we assign the feature value for that entry by dividing (2) by (1).

Only after, we update the total and failed testruns values: incrementing the number of total testruns by

one, and if the value of the ”Failing” column is 1, then also incrementing the number of failed testruns.

Max Author Failure Rate: For this feature, we save 2 values during the baseline values calculation

for each author: Numbers of total testruns(3) and failed testruns(4). In our data set, in the same testruns,

the names of the authors repeat themselves (table 4.1). Therefore, during the iteration over the data set

we need to assure that we only increment one time the number of total testruns for the same testrun.

Similiarly, when we ”find” a failing test, we also need to assure that the number of failed testruns are

increment only this time and prevent the increment in the next entries for the same testrun. For this we

have two flags: flagTestrun ”stops” to keep the increment of the number of total testruns over the same

testrun; and flagFail ”stops” the increment of the number of failed testruns in case of multiple failing tests

in the same testrun.

Other important detail is that the column ”Author” can have more than one author, for reasons already

explained. Thus, when updating the features values, this process is done to all authors that this column

contains. Also, when assigning the feature value for each entry we choose the highest failure rate value

between all authors in the ”Author” column.

Summing up, in the first entry of a testrun, we assign the feature value for that entry by diving (4) by

(3) previously saved. To notice that if the values of total and failed testruns are incremented, the authors

failure rate will only change the next testruns, because the feature value that is assigned to each entry

is always the same from the first entry (in the same testrun). 2

Max File Failure Rate: This feature’s process is very similar to the previous one. We save 2 val-

ues during the baseline values calculation for each code file: Numbers of total testruns(5) and failed
2The reason for this is that, in the regression testing process, the execution of the tests in one testrun are supposed to be ”at

the same time”. And so, the feature values only change from one testrun to another, and not during the same.

29

testruns(6). For the same reasons we have the same flags to prevent wrong updates for the numbers of

total testruns and failed testruns.

Similarly, the ”Changelog” column can contain more than one code file. Thus, when updating the

numbers of total testruns and failed testruns, this is done to all code files present in the column. And

the file failure rate chosen to assign to each entry is the highest file failure rate value out of all code files

present in the column. We calculate each file’s failure rate by dividing (6) by (5) from the same code

file. To notice that, like the previous feature the feature value that is assigned to each entry is always the

same from the first entry (in the same testrun).

Max File/Test Failure Rate: For this feature, we save 2 values during the baseline values calcula-

tion for each pair file/test: Numbers of total testruns(7) and failed testruns(8). Trivially, given that the

”Changelog” column may contain more than one file, in each iteration, we assign the feature value to the

pair with highest file/test failure rate. And similarly to other previous features we increment the number of

total testruns for each pair file/tests for all files in the ”Changelog”. And in case the test fails, the number

of failed testruns for all file/test pairs is incremented. Notice that for one entry the test is always the

same, where we need only to variate the name of the file to find the maximum pair value. The file/test

failure rates are obtain by dividing (8) by (7) for each file/test pair.

Max Author/File Failure Rate: This feature is very similar to the Max File and Max Author failure

rate features. Again, we save 2 values during the baseline values calculation for each pair author/file:

Numbers of total testruns(9) and failed testruns(10). We need to use those previously mentioned flags

to control wrong updates given the repetition of the column ”Author” and ”File” in the same testrun.

In short, for every first entry in a testrun we assign the feature value to the highest failure rate for

every pair of author/file, saved previously. These values are obtained by dividing (10) by (9) for each pair

author/file. Similarly, the feature value that is assigned to each entry is always the same from the first

entry (in the same testrun).

Extension file type: This feature and the next 3 are fairly simply to calculate. To identify the ex-

tensions of the files that the ”Changelog” column contains we create 3 columns that are set to 0 or 1,

depending on the file extensions of those files. We take into account 3 types of file extensions: C#

files(1st column), typescript files(2nd column) and other files(3rd column). For example, if we have a

combination of 1, 0, 1 from the columns it means there is at least one C# file, 0 typescript files and at

least one other file (other than C# and typescript).

Max Tokens shared file/test: In this feature we need to compare the strings between the files and

the tests. Files’ names have ”/”’s that separate the different directories they belong to and tests’ names

have ”.”’s that separate the different functions. Therefore, we split the strings by these characters and

then compare the number of equal unique substrings between the file and the test. Once again, given

that there can be more than one file in the ”Changelog” column we select the maximum number of

tokens (substrings) shared between one file and one test. Important to remember that this feature is

normalized.

Number of distinct files changed: In this feature we simply count the number of different files

included in the ”Changelog” column. The values from this feature are also normalized. This normaliza-

30

tion 3 converts all feature values to a value between 0 and 1, which is done by dividing all values my the

maximum feature value.

Number of distinct authors: In this feature we simply count the number of different authors included

in the ”Author” column. The values from this feature are also normalized.

For the last 3 features we need to create a data set which corresponds to the aggregation of the

baseline data set and the current data set. This data set (historic data set) will include testruns from

January to March.

Test failure rate history: This feature is basically the same as Test Failure Rate. We iterate over

our current data set, but in addition we define 3 dates based on the ”DateTime” column from our current

data set: The first date is 3 days before the date; the second is 14 days before the date; and the last one

56 days before the date. Then, we filter the historical data set with those dates. The result are 3 portions

of the historical data set where we have the entries with testruns from 3, 14 and 56 days before the date

in the current iteration (the date not inclusive). After this, based on the name of the ”Test” column, we

calculate the 3 different failure rates for that test in the 3 different time intervals and assign them to the

features’ column of that entry.

File failure rate history: In this feature, the procedure is the same, with the only difference that we

now calculate 3 failure rates for all the files in the ”Changelog” column in the 3 different time intervals.

Therefore, the value assigned to the features’ column are the maximum failure rates values for each

time interval for all files. So, it may happen the failure rate values may correspond to different files in

each time interval. And also, given the repetition of the ”Changelog” column in the same testrun. These

values are all calculated in the first entry of a testrun, and in the next they are simply assigned to the

features’ columns until the the last entry of that testrun.

File change history: Similarly to the previous features, we filter the historical data set based on the

same 3 time intervals. However, in this feature we calculate the number of times a file is submitted,

i.e., the time it is included in the ”Changelog” column. Also, instead of choosing the file which was times

submitted, the features’ values correspond to the sum of number of times all files were submitted in each

time interval. Like the previous feature, these 3 values are also calculated in the first entry of a testrun,

and in the next they are simply assigned to the features’ columns until the the last entry of that testrun.

5.1.3 Classifier models generation

Once we have finalized the construction process for our data sets, the first step before we starting the

classifiers training is to split the data sets into training and testing set. The training set is the part of the

data set which will be used to generate the classifiers and train them. The testing is used to evaluate

the classifiers’ prediction accuracy.

In the process of splitting the data sets into these 2 parts, we need to take into account that for

this specific problem, there is a timeline. This means that the classifier needs to capture the relations

between files, authors and tests with an order, the testruns order. Hence, the argument ”shuffle” for the

3Altough not necessary for the models we use, since it has a bigger impact with Neural Network models, we decided to
normalize all features anyways

31

”train test split” function needs to be set to ”False”.

Classifier Models’ Baseline: The first step is to train all classifiers with only the no-filter data set as

our baseline classifier models. This process is done by selecting various algorithms which will generate

our classifiers. The algorithms are used without any arguments so that we can have a baseline for each

of the classifiers generated by each one.

The algorithms used to create the classifier models were 4:

• K-Nearest Neighbour

• Logistic Regression

• Random Forest

• Balanced Random Forest

• Xgboost

Balancing data sets: Our data sets, showed some unbalance, which is normal given that, for all

testruns its expected to have more non failing failing tests than failing tests. There is a majority of class

0 (”not failing”) over the class 1 (”failing”). The ratio between the classes in the no filter data set is 59:1.

Hence, besides not using any arguments like in our baseline models, we also create over and under

samplings of the no-filter data set to balance the frequency of each class in our data sets.

Note that, not all algorithms are suited for over and/or under sampling, given that some already

implement it in their training process over the training. Also, there are some algorithms with a ”balanced”

argument, so we also used it to balance the data sets.

Therefore, we create additional model classifiers using different versions of the no-filter data set (O-

Sample no-filter data set, U-Sample no-filter data set). We also use the ”balanced” argument (whenever

makes sense) to generate a model classifier.

Therefore, besides the classifier models generated as our baselines, we also generated others by

sampling the no-filter data set using the various techniques presented above.

Hyper Parameter Tuning: The next steps are to select the classifiers which showed the best results

and submit each ones algorithm an Hyper Parameter Tuning. This way, we find a better set of arguments

and get better results for each model classifier.

The algorithms chosen above were using only the no-filter data set to train the classifiers. But re-

member that these are still not the best possible results even for this data set, given that the parameters

used were all the default ones. Hence, the next step is to submit these algorithms to an Hyper Pa-

rameter Tuning process. Now, we must provide these data sets to the algorithms above and check for

improvements regarding the no-filter data set and check the first results for the filtered data sets. Some-

thing interesting to assess, is if the filtering process brings any improvements to the classifiers prediction

accuracy.

The process of Hyper Parameter Tuning requires an analysis over the algorithms to see their param-

eter and the possible values for each parameter. To perform this process of tuning, we used the Bayes
4These algorithms belong to the scikit-learn toolbox - https://scikit-learn.org/stable/

32

https://scikit-learn.org/stable/

Search Cross Validation function. The idea is that we collect a set of parameter values for each algo-

rithm’s parameter and iteratively run the algorithms every time with different parameter values. Summing

up, we need to run 3 hyper parameter tuning processes for each algorithm above, using the 3 different

data sets to iteratively train the algorithm’s classifiers.

The Hyper Parameter Tuning function allows us to maximize different metrics such as accuracy,

precision and recall. As explained before, we prioritize recall, thus we need to define the argument

”scoring” of the Bayes Search function as ”recall”. So, in the end of each tuning iteration, the arguments

returned are the ones the maximize the recall for each pair of algorithm-data set. One important detail

is that the set of arguments returned, are the best set of parameters out of those defined in the set of

parameter values for each algorithm. Hence, these may not be the optimal set of parameters.

An important component of the Hyper Parameter Tuning is the usage of K-Fold cross validation, which

prevents over-fitting. In this tuning process, there is a testing phase for every set of hyper parameters,

completed after every training phase. But, the testing set used to test each model’s iteration can not

correspond to the actual testing set of our data sets, in order to maintain the actual testing set ”unseen”

by the classifier model.

Instead, with K Fold cross validation, the training set is divided into k random subsets. Now, in each

iteration of hyper parameter values, the model’s training and testing is repeated k times, such that each

time, one of the k subsets is used as the testing set and the other k-1 subsets are put together to form

a training set.

However, there is a particularity in our data set, where there is a timeline through out our data set

entries, i.e., each feature’s value depend on the previous one. For example, an author will have different

failure rate through our data set because this feature, such as many others, are dynamic. Therefore, in

cases where there is temporal dependency between observations, we cannot choose random samples

and assign them to either the test set or the train set. In other words we want to avoid ”looking in the

future” during the training of the model.

Considering this nuance, we need to use a variation of the previous mentioned cross validation

method called Time-series cross validation. With this cross-validation method we are still dividing our

training set into K folds, but in each time we only use sequential folds as our training and testing sets.

Fig. 5.3 better illustrates the different folds for the iterations of training and testing during the tuning

process.

After the Hyper Parameter Tuning, for each classifier models selected from the previous step, we get

a set of hyper parameters. Then, the next step is to train each model with the respective set of hyper

parameters, using the original testing set. The results of each classifier model are then analysed and

will be showed in chapter 6.

33

Figure 5.3: Time-series cross validation

34

Chapter 6

Results

This chapter mainly focus on presenting the results by the model classifiers trained during the solution

tool construction pipeline. Hence, 6.3 is divided in 4 groups: Baseline Models’ Results, Balanced Models’

Results and Hyper Parameter Tuning Results. This chapter also includes the evaluation process and

guidelines used to choose the classifiers which to move forward into future steps of the solution tool

creation and the classifier chosen to ”represent” the solution tool.

6.1 General Details

Before entering in the experiments with the model classifiers, first we need to present some general

details regarding the data extracted from the OutSystems database, the building process of the data

sets and of training of the model classifiers, and the methodology behind the evaluation of each model

classifier.

6.1.1 Data set

Regarding our experimental data sets 1, we decided to include testruns starting from March 1st 2020 to

April 8th 2020. As mentioned before in 4.2.1, we created the baseline data set to more accurately define

the dynamic features’ values. This baseline data set needed to contain data from previous testruns.

Hence, we decided to include in this one, testruns from January 1st 2020 to February 28th 2020.

Therefore, during the data retrieval from the OutSystems database, we filtered the queries on the

OS Commit table based on the ”Date time” parameter.

In order to generate the classifier models, we need to split our data sets into training and testing sets.

The model classifier algorithm’s uses the training set to generate its classifier model. On the other hand,

the testing set is used to evaluate the classifier model’s prediction capabilities. When performing this

split on the data sets, we did it such that the testing set includes testruns from March 1st to March 31th.

And the testing set includes testruns from April 1st to April 8th.

1no-filter, flaky-filter and innocent-filter data sets

35

6.1.2 Code base

Another detail, regarding the testruns included in the experimental data sets, which we needed to look

out for was the types of files in each testrun. The thesis’ research application focuses on the OutSystems’

main software component: Service Studio. Hence, in all the files submitted by developers in commits

to the code repository, there are some not related with the Service Studio project. And since there is

no way to identify a priori which testruns are or not related to this project, we can only identify them

by checking the ”Changelog” parameter. The files related to Service Studio application start with the

”ServiceStudio” substring.

However, another nuance related to the files is their file extension. Service Studio is a visual tool,

and so there are various non-product functionality files (for example .png files) inside the project. Again,

we are focused only on functionality of the product, thus only files with file extensions of .cs and .ts/.tsx

have to be taken into account.

Therefore, given that testruns may aggregate various files, all of testruns in our data sets have at

least one Service Studio code file with one of the file extensions above.

6.1.3 Test Suite

The other component of our data sets are the test files for each testrun. In order not to overcrowd

our data sets and to maintain our focus on the Service Studio application, we select specific stages of

tests to be part of our data sets. Upon, talking with the OutSystems’ developers with the knowledge

about which stages of tests target the Service Studio application, we included tests from the stages

Development and CorePlatform. The Development stage contains 5910 test files and the CorePlatform

stages contains 6018 test files. The median execution time of the stages are 2500 and 450 seconds for

CorePlatform and Development, respectively.

Also, given that we wish to compare results with Daniel Correia’s work [8], the choice to include only

these stages of tests like Daniel did, the comparison between both works results is fairer.

6.1.4 Software and harware

The work performed in this thesis from the data extraction to the building of the data sets was made

using the Python programming language and the most important python libraries used were pandas and

sklearn.

However, the process of training and hyper parameter tuning of all the model classifiers showed to

be a very computational heavy process. Therefore, all of the processes related to the training of model

classifiers were conducted on a single machine with 16GB of RAM and a 4-core Intel i7 CPU running at

2.60GHz.

36

6.2 Evaluation methodology

The training of the baseline and balanced models were performed to assess the most promising model

classifiers. Therefore, the evaluation of the results from these model classifiers take only into account

the values of recall from all the model classifiers. Fig.6.1 shows an example of a confusion matrix and a

classification report returned after the training and testing phase of a model classifier.

Table 6.1: Example of a classifier model’s results

When evaluating the values showed, for the problem we have in hands we prioritize high values of

recall over precision. Recall relates to the ability of a classifier model to correctly identify the positive

values (tests that fail). Where precision relates to the ability of correctly distinguish the positive values

from the negative values. For the problem in hands, given the large amount of tests per stage there are

(approximately 5000 tests), we give more value to classifiers, which show the best ability to identify all

positive values, rather than to distinguish between the positives and negatives. In other words, we do

not mind if the classifier selects a few negatives values (tests that do not fail) as tests probable to fail,

while selecting the maximum number of failing tests. Notice that the recall values that are analyzed is

the one highlighted in red, because they are the ones related to the identification of the positive values

(tests classified as ”failed”). So the evaluation guideline during the training of the baseline and balanced

models is to first compare recall values (6.1).

Recall =
#failing tests selected

failing tests
(6.1)

Although recall is one of the most important metrics to considerate, when comparing the classifier

models results, it must be complemented with other important metric: the execution time of the selected

tests. When training our models we do not want one that optimizes the results based solemnly on recall,

because for that we would select all tests we would achieve perfect recall values. Remembering one of

the goals of this solution of reducing the developers’ feedback time, we use the median execution time

of the selected tests to complement the recall metric and we need to do a trade-off between this metrics.

After the hyper parameter tuning of all classifiers, the evaluation guidelines are more complete.

Once we get the returned parameters for each pair of algorithm-data set, we train the correspondent

classifiers. Since we are in the final stage of evaluation, we do not want to only evaluate each classifier

37

by its recall.

To produce more specific data and choose a model classifier to use in the final product of the solution

tool, we decided to evaluate the classifiers performance for each testrun. Instead of just looking at the

macro recall (recall over all data set) returned by the classifiers’ classification report, we, additionally,

calculate the following metrics:

• Average micro-recall (6.2) per testrun

• Median of selected tests per testrun

• Median of failing tests per testrun

• Median of number of times the classifier selects at least one test per testrun

• Median of execution time of the tests selected per testrun

• Median of time saved per testrun

The micro-recall equation is defined in (6.2).

Micro−Recall(n) =
#failing tests selected in TR(n)

failing tests in TR(n)
(6.2)

The metrics calculated are differentiated by stage, i.e., we calculate the metrics values for stages

Core Platform and Development separately. The reason why we choose median over average in the

majority of the metrics (except micro-recall) is because the first is more resilient to outliers than the

second.

An important thing to notice about micro-recall is that, for this metric, only testruns which have failing

tests count, because in cases where no tests fail the micro-recall would be zero for that testrun. By doing

this, we eliminate these outliers testruns. Using average instead of median would be more precise if we

did not calculate the micro-recall as we explained, but by doing it this way the average micro-recall is

equally reliable.

During the testing phase of the classifiers over the testing set, the class of each entry is predicted.

More specifically, the classifiers assigns a probability to each entry and based on a pre-defined thresh-

old2 the class of the entries are 0 or 1: if the probability is equal or higher than the threshold, the class

is predicted as 1. Otherwise, is predicted as 0.

To calculate the metric values we use the probability predicted by the classifier for each entry, instead

of the actual class (0 or 1). Therefore, we need to concatenate these probabilities predictions to each

entry testing set. Remembering that, for each entry in our data sets we have a testrun value, hence,

when doing this concatenation, we can identify the tests’ outcome in each testrun. After this process,

we iterate over this new data sets to calculate the metrics mentioned above. Since each classifier may

have different predictions, this process is repeated for all classifiers generated.

The reason why we use the probability prediction instead of the class value is explained in the next

subsections.
2most common default threshold is 0.5

38

6.2.1 Threshold variation experiment

One experiment decided to implement in the evaluation of the classifier models is the variation of the

threshold value for each one. Thus, the reason for the use of the probability value. By using the

probability value, we can get the metrics values for different threshold by just vary its value, without the

need to explicitly write the code for the classifier model prediction with different threshold values.

It is expected that, by increasing/decreasing the threshold value, the number of tests selected de-

creases/increases respectively. By doing this, the metrics mentioned above change and we can obtain

better results.

6.2.2 Time limit variation experiment

Another experiment decided to implement is one that fits more into the real world and the developers’

necessities when trying to test their code - the Time limit variation. To achieve this, for each testrun

in the prediction data sets, the probabilities are sorted, starting by the highest probabilities. Also, for

each entry in all of the prediction data sets, we concatenate the median time for the test in that entry

(calculated from previous testruns). After this, we concatenate another column with the cumulative sum

of these times through out the prediction data set. These last column is what allows the developers to

set a time limit for the tests’ execution, which is basically an iteration over the prediction data set that

stop whenever the cumulative sum value reaches the time limit value defined by the developer.

For the last variation of results all of the metrics previously mentioned are calculated, with exception

for the median test execution time, given that it is implicit in each time limit variation.

Also important to mentioned is that, we need to set different time limits for different stages since

they have different execution times. Therefore, to set up our baseline limit for both stages, we need to

calculate the median for test execution time for both stages.

Summing up, we run multiple versions of these 2 variations of evaluations over all classifiers’ predic-

tions, where we iterate over different values of thresholds and different time limit values. Then, we check

which classifier has the best results with which threshold and time limit values. The best model classifier

will be used in the solution tool.

6.3 Experiments

6.3.1 Baseline classifier models

The results from the baseline classifier models are shown in Fig.6.2.3 During the training of these

models, all of the functions’ algorithms which were used were empty, i.e., no parameters were set.

Thus, all the default values for each algorithm were used.

The figure shows a clearly advantage from Balanced Random Forest which, as the name says,

3All of these results are from using only the no-filter data set.

39

Table 6.2: Macro-recall values from the baseline classifier models

already implements balancing techniques. This complements the idea that our data set is indeed unbal-

anced.

6.3.2 Balanced classifier models

Given the unbalance in our data sets which the results obtained by the baseline models , we apply

balancing techniques to our data sets. We used over and under sampling techniques. We also made

use of the ”class weight” parameter from the algorithms and set it to the ”balanced” value. Important to

notice that regarding over and under sampling techniques, only the testing set is sampled. The testing

set remains untouched.

Fig 6.3 shows the results from the classifier models fitted for balancing.

Table 6.3: Macro-recall values from the balanced classifier models

The K-NN algorithm was left out, given the large amount of time it took to get the prediction results.

The Balanced Random Forest is also not included for obvious reasons.

40

By analysing the macro-recall values of the classifier models, we can clearly see that the usage of

over sampling and of the ”class weight” parameter boost up the baseline recall values. Specifically, the

Random Forest with oversampling, the Logistic Regression with over sampling and with the ”balanced”

parameter show the most promising results with macro-recall values over the 0.90 percentage.

Given, these results these 3 classifier models are the ones chosen to mover forward into the solution

tool construction where they will be subjected to an Hyper Parameter Tuning.

6.3.3 Tuned classifier models

During the Hyper Parameter Tuning process we make use of all our data set, since previously we only

were using the no-filter data set. Hence, now we can see how our best classifier models deal with the

two additional filters. From the results in 6.3.2 we have to perform the tuning on the Logistic Regression

and Balanced Random Forest algorithms using all 3 data sets.

The tuning process of these algorithms is basically the iterative training of the classifier models

with different set of hyper parameters. Therefore, we need to create a set of hyper parameters for

each algorithm. This requires the study of each algorithms’ hyper parameters to see which values make

sense, while trying to balancing between the optimal combination of hyper parameters and the execution

time for the tuning process. Fig6.4 shows the set of hyper parameters used in the tuning of the Balanced

Random Forest and the Logistic Regression algorithms.

Table 6.4: Set of hyper parameters for each algorithm

Important to notice that to generate the Logistic Regression (balanced) classifier model, we define

its hyper parameter ”class weight” as ”balanced”. On the other hand, the Logistic Regression (over

sampling) classifier is ”balanced” by over sampling the data set.

The algorithm which we use to perform the tuning process is the Bayes Search Cross Validation.

This algorithm allows us to maximize the recall metric. Therefore, for each classifier model tuned, the

hyper parameters returned by the function are the ones that maximize the recall values within the search

space defined (table 6.4).

The results for the tuned classifier models in Fig.6.5 show the macro recall and improvement from the

previous iterations. The results are also divided by the data set used to train and evaluate the classifier

models. Each data set is used for both training and testing the classifier model.

41

Table 6.5: Results of the tuned classifier models

By analysing the table, we can clearly see that the classifier models, when trained and tested with the

flaky-filter data set, do not show great results, with a huge decrease in the macro-recall values. Regard-

ing the innocent-filter data set, the Balanced Random Forest model shows good results by equalizing

the macro-recall values for the previous iteration. And last, with the no filter data set all classifier models

maintain the macro-recall values. Summing up we have 4 classifier models which stand out from the

rest.

Therefore, in order not to overcrowd the thesis with results’ tables, for the two evaluation variations

we use only the classifier models highlighted with red in Fig.6.5, which are the ones showing the best

macro-recall values.

The next evaluation on the highlighted model classifiers is regarding the other metrics, besides the

recall, mentioned in 6.2, by varying the threshold values and limiting the test execution time.

Threshold variation experiment

For the threshold variation evaluation, the first set of results correspond to the default threshold value

(0.5). Table 6.6 show the values of all metrics for the threshold variation evaluation with threshold at that

value.

Table 6.6: Threshold variation results with threshold at 0.5

Some interesting facts worth pointing out are that the Balanced Random Forest classifier trained and

tested with the innocent-filter data sets have the highest recall value of all the classifier models.

42

Regarding the micro-recall average, the Balanced Random Forest (with no filter and innocent-filter)

classifiers have the highest average micro-recall for the Development test stage. The Balanced Random

Forest (BRF) classifier with the no filter data set has the highest average micro-recall for the CorePlat-

form test stage with 90%.

In terms of time saved on the execution of tests, all classifiers show similar saved time in the De-

velopment stage. However, for the CorePlatform stage, the Logistic Regression classifiers show best

results in this topic, with over 1100 seconds (18 minutes and 20 seconds) saved in tests’ execution time.

The BRF classifier (no filter data set) shows the highest values of selected tests in terms of both

stages. Also, we see that all model classifiers show great capacity to select relevant tests, given the

median percentage of times the models select at least one failing test.

The figures 6.1- 6.4 do not include all of this information. Since we do not want to overcrowd this

chapter with tables like the previous one for all thresholds, instead we plotted the variation of thresholds

(as x) with the average micro-recall values and the execution time of the selected tests (as y1 and y2,

respectively). We chose recall and execution time metrics, given that these two are the ones which are

more representative of the classifier models performance. For each classifier model we plotted 2 graphs,

one for each test stage.

((a)) Recall and test execution time - CorePlatform stage ((b)) Recall and test execution time - Development stage

Figure 6.1: Threshold variation for the BRF (no filter data set) classifier model

((a)) Recall and test execution time - CorePlatform stage ((b)) Recall and test execution time - Development stage

Figure 6.2: Threshold variation for the BRF (innocent-filter data set) classifier model

43

((a)) Recall and test execution time - CorePlatform stage ((b)) Recall and test execution time - Development stage

Figure 6.3: Threshold variation for the LR-B (no filter data set) classifier model

((a)) Recall and test execution time - CorePlatform stage ((b)) Recall and test execution time - Development stage

Figure 6.4: Threshold variation for the BRF-OS (no filter data set) classifier model

Looking at the results we can see a clearly distinguish two behaviours from the algorithms used -

Balanced Random Forest and Logistic Regression. In the first one, we see a more subtle variation of

the micro-recalls values. If we look closely to the micro-recall values from threshold values smaller than

0.5 in the models from this algorithm, we almost see an increase in these values. Whereas, in the

Logistic Regression models, we can notice not a great variation of micro-recall values before reaching

high threshold values.

Also the overall micro-recall values from the Balanced Random Forest classifiers are higher than the

ones from the Logistic Regression classifiers. Now, regarding each stage individually we can see that

the first two classifier models manage to achieve perfect micro-recall for the stage Development, while

reaching execution times below the 200 seconds. This means that the median execution time of this

stage is cut down to more than half. In the Logistic Regression classifiers, we can see a bigger cut down

from this stage median execution time, with test execution times below the 50 seconds. However in both

classifiers, to achieve these values, the micro-recall is no superior than 95%.

In terms of the CorePlatform stage, the results are more similar trough out all classifier models. Still,

the one which gets better results is the BRF-no filter data set model, where the execution time of the

stage reaches the 1000 secs (more than half of the median time), while maintaining 90% micro-recall.

44

Behind, this one come the Logistic Regression classifiers with 88%-83% micro-recall values and 1000

seconds of test execution time. And in last comes the BRF-innocent filter data set with 80% micro-recall

and 1000 seconds of test execution time.

Time Limit variation experiment

Regarding the time limit variation evaluation, given the median execution time of the stages of 2500

for CorePlatform and 450 seconds for Development, these are the first time limit values for the first

results in this evaluation variation. Table 6.7 shows the metrics values for this pair of time limits.

Table 6.7: Metrics values for the time limits 2500 (CorePlatform) and 450 seconds (Developement)

We can see that all classifier models have perfect micro-recall and almost perfect recall values, for

those time limits, which is expected.

After the results from the threshold variation, we decided to select, for each classifier model, different

pairs of time limits for the 2 stages, by taking into account specific time limits which show high micro-

recall values. Therefore, to better categorize the results by time limits we decided to choose the best

pair of time limits for each classifier and test stage. Then, we test each others’ classifiers best pairs.

These best pairs have to take into account the micro-recall. Specifically, for stage Developement, we

prioritize time limits with micro-recalls near the 100%, given the short amount of time of the stage. In

contrast, in the CorePlatform stage we prioritize time limits with +90% of micro-recall.

The time limits for each classifier model and stage were:

• BRF-no filter data set: Core Platform - 2100 secs; Development - 188 secs;

• BRF-innocent filter data set: Core Platform - 2200 secs; Development - 167 secs;

• BRF-no filter data set: Core Platform - 1473 secs; Development - 51 secs;

• BRF-no filter data set: Core Platform - 1955 secs; Development - 36 secs;

These values were selected based on the threshold variation results for all classifiers model. These

results will be in the Appendix chapter.

Tables 6.8- 6.11 show the metrics results from classifiers models with the time limits mentioned

above.

In table 6.8, with exception to the BRF - innocent filter data set model, all classifiers show equal recall

and micro-recall values. The LR(OS) - no filter data set classifier has the highest recall. However, it is

the other Logistic Regression model which has the best combination of micro-recall for both stages.

45

Table 6.8: Time limit variation results - Core Platform - 2100 secs, Development - 188 secs

Table 6.9: Time limit variation results - Core Platform - 2200 secs, Development - 167 secs

Table 6.10: Time limit variation results - Core Platform - 1473 secs, Development - 51 secs

Table 6.11: Time limit variation results - Core Platform - 1955 secs, Development - 36 secs

In table 6.9, with the increase in the time limit for the CorePlatform stage, we see that all models

increase their micro-recall values for this stage. The LR(OS) - no filter data set classifier still has the

highest recall, but is again the other Logistic Regression classifier with the best combination of micro-

recall values for both stages.

In table 6.10, shows poor results from all model classifiers, which indicates that the time limit used

46

here are too low to have high recall and micro-recall values.

In table 6.11, regarding the CorePlatform stage, we had already seen that time limit values around

the 2000 secs showed good micro-recall results. However, by decreasing more the time limit for the

Development stage we did not achieved any improvements in micro-recall values.

47

48

Chapter 7

Conclusions

In this chapter we discuss the work developed by comparing its results with the results obtained by

Daniel Correia’s thesis work with his method coverage approach. We also present future approaches on

the test selection subject that can help improve the results and highlight the main contributions of this

thesis by introducing a potential integration of the solution tool into the CI OutSystems’ pipeline.

7.1 Discussion

The main goal of this thesis was to reduce the time developers have to wait to receive feedback on their

code submissions. This thesis describes the process to build a Machine Learning classifier model which

can correctly identify which tests to run for every developer commit to achieve this main goal.

In this process we faced some challenges. One of them was regarding the calculation of features

values. The initial idea for some features had to be changed in order not to make our data sets larger

than they already are. For example, for the ”Max File Failure Rate”, the initial idea was to correspond

every code file individually to every test file. This made the data set 10 times larger, which made the

training of the classifier model very long. Another challenge to overcome, was regarding the commits and

builds aggregation into testruns. This nuance was found when analysing the data from the databases

and confirming missing builds and commits.

Differently, the process of training and tuning the classifier models was fairly straight forward, using

the sklearn python package.

From all the classifier models trained, there were four which stand out from the rest: the Balanced

Random Forest classifiers trained with the no filter (1) and the Innocent-filter data set (2); the Logistic

Regression classifier model trained with an Over-sample of the no filter data set (3); and the Logistic

Regression ”balanced” classifier trained with the no filter data set (4). Right after the tuning process

it was clear that the classifier model (2) was the most promising since it had the highest recall values

(93%). However, when varying the models’ threshold values and calculating more specific metrics, we

saw different outcomes. In the Development stage, the classifier (1) showed the best results, achieving

100%of micro-recall, while reducing the median test execution time by more than half (down to 167

49

seconds). Regarding the CorePlatform stage, the classifiers (1), (3) and (4) had pretty similar results

with micro-recalls of 93% and reducing the median test execution time to 2000 seconds. However, in the

mark of the 1000 seconds of execution time for this stage, the classifier (1) achieved better micro-recall

values with values of 90%.

Regarding the time limits experience, the time limits which showed best recall and micro-recalls

values were the 2200 and 167 for CorePlatform and Development stages, respectively. Given this results

we can see that, by limiting the test stages with these values, we manage to achieve recall values near

98%, for classifiers (1), (3) and (4), while reducing the CorePlatform stage execution time by 300 seconds

(-12%) and the Development stage execution time by 283 seconds (-63%).

Summing up, the results presented his results are promising for a possible integration of this tool in

the CI pipeline at OutSystems, and also that the implementation procedures could be applied in other

companies’ context. Given the results of all classifier models, the one chosen to be used in a future

iteration of this thesis tool is the Balanced Random Forest-no filter data set model.

7.1.1 Results comparison

Given the context of this thesis in the Test Selection at OutSystems, we decided to compare this thesis’

solution with the others solutions from Diogo and Daniel’s work. To obtain the fairest results possible,

we used the same time interval of the testing set (April 1st 2020 to April 8th 2020).

The results from Diogo’s tool solution are described in table 7.1.

Table 7.1: Results from Diogo’s solution tool

Given the challenges presented in his thesis with poor mapping of external calls from test files exe-

cution, Diogo’s results are far inferior to the ones achieved by this thesis.

Unfortunately, regarding Daniel’s solution tool, it was not possible to replicate his tool to the our time

interval. For that, we cannot fairly compare this thesis work with his. However, the recall values obtained

in the his tool’s period of testing were far lower than the ones obtained in this thesis, given that he faced

some challenges regarding the data coverage extraction and the limited applicability to cross-language

code.

7.2 Future Work

Throughout this thesis there were some approaches left aside due to limited time. In this section we

present 1 example of an addiction to the work done and 1 different approach to the test selection process

using Contextual bandits.

50

7.2.1 Tool with warning messages

In the paper [34] from Google, the authors, empirically study the correlations that exist between their

code, test cases, developers, programming languages, and code change and test-execution frequen-

cies. More specifically, in their implementation they warn developers, while they write code, of the

impact of their latest changes on quality. For example, if a developer is to commit a certain code file,

in case that particular code file is known to cause a high percentage of Google’s breakages, an alert is

issued with this information. This way, the developer is more careful about said code file and performs a

more thorough code review.

Adding this kind of messages in a pre-commit stage and complementing the solution tool of this

thesis would be something which would enrich the value of the work of this thesis. This would not impact

directly the results from the model classifier. Instead it would encourage better coding practices, since

developers would be more careful when committing a ”dangerous” file.

7.2.2 Contextual bandits approach

Contextual Bandits classifies as a Reinforcement Learning algorithm. Reinforcement Learning algorithm

is described as the problem faced by an agent that must learn behavior through trial-and-error interac-

tions with a dynamic environment. Kaelbling et al. in [37] describes the Reinforcement Learning Model

as:

• a discrete set of environment states.

• a discrete set of agent actions.

• a set of scalar reinforcement signals; typically 0 or 1, or real numbers.

The traditional Reinforcement Learning process involves the agent receiving as input, in each iter-

ation, information about the current state of the environment. Then, the agent chooses an action, that

changes the state of the environment and the agent receives a scalar reinforcement signal, product of

the previous transition. The objective of the agent is to find a policy that maximizes the sum of these

reinforcement signals over all iterations.

A contextual bandit algorithm can be seen as a simplification of the Reinforcement Learning al-

gorithm. The difference lays in the fact that the agent in Reinforcement Learning can make multiple

consecutive actions, and reward information is sparse, thus making it harder to train a model. Where in

a contextual bandit algorithm, the agent makes one action and gets its reward. In future actions it will,

not only take into account the state of the environment (context), but also the reward previously received

for that action.

So, one possibility of implementation in the context of test selection, would be for each developer

commit, the algorithm selects a subset of tests. The metrics we want to maximize are recall and time

saved in test executions. After the full regression testing phase, the algorithm receives positive or neg-

ative reward based on the comparison of the values from the current and previous regression testing

phase.

51

7.3 Contributions

The work developed in this thesis resulted in a contribution regarding the current CI pipeline at Out-

Systems. Although we only targeted the company’s main component, Service Studio, this solution is

exepected to work well if implemented across other OutSystems’ departments which do no work directly

with Service Studio.

7.3.1 OutSystems

In order to implement the solution tool in the OutSystems context, the use of the tool itself, is preceded

by the extraction of data from the company’s database to build a similar data set to the one showed

in previous chapter. The only difference is that this data set had to be updated (for example every 15

days, depending on the frequency of the developers commits) in order to maintain accurate values for

all features. In every update on the data set, the classifier model had to be trained in order to check

the continuance of its prediction capability. After the model is trained and tested, the features values

correspondent to the developers commit need to be calculated. After this, the developer runs the solution

tool for his commit. Fig.7.1 shows the steps for the implementation of the tool in the OutSystems’ CI

pipeline.

Figure 7.1: Tool implementation example into the OutSystems CI pipeline

In the end of this thesis, after all the results were obtained, we did a small questionnaire to 5 de-

velopers at OutSystems, regarding the type of output the tool should give to the developers. In this

questionnaire we explain the main goal of the work developed in the thesis and presented 3 different

variations of the tool’s output results.

The first variation would be a tool which simply returned a list of predicted tests.

The idea of the second variation comes from the Time Limit Evaluation, where the tool would return

the tests ordered by the probability value given by the classifier model. After, this, the developer would

decide the time limit for the execution of this ordered test list.

The third variation would be a combination of both variations above, but more informative. The tool

would return the list of tests predicted by the classifier model (to fail) with information about its execution

time and the number of predicted tests. However, the tool would give the opportunity to the developer to

increase or decrease the time of the tests execution time.

The feedback received from the developers was very good, specifically regarding the third variation,

52

where one of the developers highlighted that this addition to the tool would ”promote” small changes by

developers at a time, instead of large ones. Since it would be relatively fast to receive feedback from the

solution tool, developers would resort to the tool output more often.

53

54

Bibliography

[1] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig. Usage, costs, and benefits of continuous

integration in open-source projects. In Proceedings of the 31st IEEE/ACM International Conference

on Automated Software Engineering, ASE 2016, Singapore, September 3-7, 2016, pages 426–437,

2016.

[2] J. Levenberg. Why google stores billions of lines of code in a single repository. Commun. ACM, 59

(7):78–87, 2016.

[3] S. Yoo and M. Harman. Regression testing minimization, selection and prioritization: a survey.

Softw. Test., Verif. Reliab., 22(2):67–120, 2012.

[4] A. A. Philip, R. Bhagwan, R. Kumar, C. S. Maddila, and N. Nagappan. Fastlane: test minimization for

rapidly deployed large-scale online services. In Proceedings of the 41st International Conference

on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pages 408–418,

2019.

[5] M. Machalica, A. Samylkin, M. Porth, and S. Chandra. Predictive test selection. In Proceedings

of the 41st International Conference on Software Engineering: Software Engineering in Practice,

ICSE (SEIP) 2019, Montreal, QC, Canada, May 25-31, 2019, pages 91–100, 2019.

[6] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An empirical analysis of flaky tests. In Proceedings

of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering,

(FSE-22), Hong Kong, China, November 16 - 22, 2014, pages 643–653, 2014.

[7] P. M. Pereira. Analysis of Network Attacks and Security Events using Modern Data Visualization

Techniques. PhD thesis, 2015.

[8] D. Correia, R. Abreu, P. Santos, and J. Nadkarni. Applying multi-objective test selection for contin-

uous integration at outsystems. Master’s thesis, Instituto Superior Técnico, 2019.

[9] M. Gligoric, L. Eloussi, and D. Marinov. Practical regression test selection with dynamic file depen-

dencies. In Proceedings of the 2015 International Symposium on Software Testing and Analysis,

ISSTA 2015, Baltimore, MD, USA, July 12-17, 2015, pages 211–222, 2015.

[10] S. B. Kotsiantis. Supervised machine learning: A review of classification techniques. Informatica

(Slovenia), 31(3):249–268, 2007.

55

[11] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine learning

algorithms. In Advances in neural information processing systems, pages 2951–2959, 2012.

[12] D. P. Solomatine, M. Maskey, and D. L. Shrestha. Eager and lazy learning methods in the context of

hydrologic forecasting. In Proceedings of the International Joint Conference on Neural Networks,

IJCNN 2006, part of the IEEE World Congress on Computational Intelligence, WCCI 2006, Van-

couver, BC, Canada, 16-21 July 2006, pages 4847–4853, 2006.

[13] F. Pereira, T. M. Mitchell, and M. Botvinick. Machine learning classifiers and fmri: A tutorial overview.

NeuroImage, 45(1):S199–S209, 2009.

[14] E. B. Hunt, J. Marin, and P. J. Stone. Experiments in induction. Academic Press, 1966.

[15] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.

Wadsworth, 1984.

[16] I. Kononenko. Estimating attributes: Analysis and extensions of RELIEF. In Machine Learning:

ECML-94, European Conference on Machine Learning, Catania, Italy, April 6-8, 1994, Proceedings,

pages 171–182, 1994.

[17] A. K. Jain, J. Mao, and K. M. Mohiuddin. Artificial neural networks: A tutorial. IEEE Computer, 29

(3):31–44, 1996.

[18] L. E. Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009.

[19] T. G. Dietterich. Ensemble learning. 2002.

[20] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[21] A. Liaw and M. Wiener. Classification and regression by randomforest. 2002.

[22] R. E. Schapire. A brief introduction to boosting. In Proceedings of the Sixteenth International Joint

Conference on Artificial Intelligence, IJCAI 99, Stockholm, Sweden, July 31 - August 6, 1999. 2

Volumes, 1450 pages, pages 1401–1406, 1999.

[23] Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In Machine Learning,

Proceedings of the Thirteenth International Conference (ICML ’96), Bari, Italy, July 3-6, 1996, pages

148–156, 1996.

[24] J. Friedman. Greedy function approximation: a gradient boosting machine. In Annals of Statistics

29(5), page 1189–1232, 2001.

[25] R. Maclin and D. W. Opitz. An empirical evaluation of bagging and boosting. In Proceedings of

the Fourteenth National Conference on Artificial Intelligence and Ninth Innovative Applications of

Artificial Intelligence Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode Island,

USA, pages 546–551, 1997.

56

[26] J. R. Quinlan. Bagging, boosting, and C4.5. In Proceedings of the Thirteenth National Conference

on Artificial Intelligence and Eighth Innovative Applications of Artificial Intelligence Conference,

AAAI 96, IAAI 96, Portland, Oregon, USA, August 4-8, 1996, Volume 1, pages 725–730, 1996.

[27] M. Feurer and F. Hutter. Hyperparameter optimization. In Automated Machine Learning, pages

3–33. Springer, Cham, 2019.

[28] T. M. Padmaja, N. Dhulipalla, P. R. Krishna, R. S. Bapi, and A. Laha. An unbalanced data classi-

fication model using hybrid sampling technique for fraud detection. In International Conference on

Pattern Recognition and Machine Intelligence, pages 341–348. Springer, 2007.

[29] J. Micco. The state of continuous integration testing @google. 2017.

[30] G. Rothermel and M. J. Harrold. Analyzing regression test selection techniques. IEEE Trans.

Software Eng., 22(8):529–551, 1996.

[31] Y. Wei, B. Meyer, and M. Oriol. Is branch coverage a good measure of testing effectiveness? In

Empirical Software Engineering and Verification - International Summer Schools, LASER 2008-

2010, Elba Island, Italy, Revised Tutorial Lectures, pages 194–212, 2010.

[32] O. Legunsen, A. Shi, and D. Marinov. STARTS: static regression test selection. In Proceedings

of the 32nd IEEE/ACM International Conference on Automated Software Engineering, ASE 2017,

Urbana, IL, USA, October 30 - November 03, 2017, pages 949–954, 2017.

[33] I. Roshanski, M. Kalech, R. Stern, and A. Elmishali. The cold start problem in software fault predic-

tion. 2019.

[34] A. M. Memon, Z. Gao, B. N. Nguyen, S. Dhanda, E. Nickell, R. Siemborski, and J. Micco. Taming

google-scale continuous testing. In 39th IEEE/ACM International Conference on Software Engi-

neering: Software Engineering in Practice Track, ICSE-SEIP 2017, Buenos Aires, Argentina, May

20-28, 2017, pages 233–242, 2017.

[35] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov. Deflaker: automatically detect-

ing flaky tests. In Proceedings of the 40th International Conference on Software Engineering, ICSE

2018, Gothenburg, Sweden, May 27 - June 03, 2018, pages 433–444, 2018.

[36] R. Martins, R. Abreu, P. Santos, and J. Nadkarni. Test suite selection guided by machinelearning.

Master’s thesis, Instituto Superior Técnico, 2019.

[37] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. J. Artif. Intell.

Res., 4:237–285, 1996.

57

58

Appendix A

Classifier models metrics values

Figure A.1: Threshold variation results for the Balanced Random Forest-no filter data set classifier model

59

Figure A.2: Threshold variation results for the Balanced Random Forest-innocent filter data set classifier
model

Figure A.3: Threshold variation results for the Logistic Regression (balanced)-no filter data set classifier
model

60

Figure A.4: Threshold variation results for the Logistic Regression(OS)-no filter data set classifier model

61

62

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Topic Overview
	1.3 OutSystems context
	1.3.1 Test Selection
	1.3.2 Flaky Tests
	1.3.3 Innocent Commits

	1.4 Objectives
	1.5 Thesis Outline

	2 Background
	2.1 Test Selection
	2.2 Supervised Learning
	2.3 Algorithm Selection
	2.4 Hyper Parameter Tuning
	2.5 Unbalanced data sets
	2.6 Flaky Tests

	3 Related Work
	3.1 Test Suite Selection
	3.2 Feature Selection
	3.3 Flaky Tests

	4 Solution Proposal
	4.1 Goals
	4.2 Solution Design
	4.2.1 Data Set and Features definition
	4.2.2 Classifier Models' Training and Tuning

	5 Implementation
	5.1 Overview
	5.1.1 Data sets creation
	5.1.2 Features data extraction
	5.1.3 Classifier models generation

	6 Results
	6.1 General Details
	6.1.1 Data set
	6.1.2 Code base
	6.1.3 Test Suite
	6.1.4 Software and harware

	6.2 Evaluation methodology
	6.2.1 Threshold variation experiment
	6.2.2 Time limit variation experiment

	6.3 Experiments
	6.3.1 Baseline classifier models
	6.3.2 Balanced classifier models
	6.3.3 Tuned classifier models

	7 Conclusions
	7.1 Discussion
	7.1.1 Results comparison

	7.2 Future Work
	7.2.1 Tool with warning messages
	7.2.2 Contextual bandits approach

	7.3 Contributions
	7.3.1 OutSystems

	Bibliography
	A Classifier models metrics values

